Abiotic methanogenesis from organosulphur compounds under ambient conditions

被引:96
作者
Althoff, Frederik [1 ,2 ]
Benzing, Kathrin
Comba, Peter
McRoberts, Colin [3 ]
Boyd, Derek R. [4 ]
Greiner, Steffen [5 ]
Keppler, Frank [1 ,2 ]
机构
[1] Heidelberg Univ, Inst Earth Sci, D-69120 Heidelberg, Germany
[2] Max Planck Inst Chem, D-55128 Mainz, Germany
[3] Agr & Food Biosci Inst, Belfast BT9 5PX, Antrim, North Ireland
[4] Queens Univ Belfast, Sch Chem & Chem Engn, Belfast BT9 5AG, Antrim, North Ireland
[5] Ctr Organismal Studies, D-69120 Heidelberg, Germany
来源
NATURE COMMUNICATIONS | 2014年 / 5卷
关键词
AEROBIC METHANE EMISSION; ULTRAVIOLET-RADIATION; TERRESTRIAL PLANTS; DIMETHYL-SULFOXIDE; ASCORBIC-ACID; OXIDATION; RADICALS; METHYL; MECHANISMS; METHIONINE;
D O I
10.1038/ncomms5205
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Methane in the environment is produced by both biotic and abiotic processes. Biomethanation involves the formation of methane by microbes that live in oxygen-free environments. Abiotic methane formation proceeds under conditions at elevated temperature and/or pressure. Here we present a chemical reaction that readily forms methane from organosulphur compounds under highly oxidative conditions at ambient atmospheric pressure and temperature. When using iron(II/III), hydrogen peroxide and ascorbic acid as reagents, S-methyl groups of organosulphur compounds are efficiently converted into methane. In a first step, methyl sulphides are oxidized to the corresponding sulphoxides. In the next step, demethylation of the sulphoxide via homolytic bond cleavage leads to methyl radical formation and finally to methane in high yields. Because sulphoxidation of methyl sulphides is ubiquitous in the environment, this novel chemical route might mimic methane formation in living aerobic organisms.
引用
收藏
页数:9
相关论文
共 54 条
[41]   New Mechanistic Aspects of the Fenton Reaction [J].
Rachmilovich-Calis, Sandra ;
Masarwa, Alexandra ;
Meyerstein, Naomi ;
Meyerstein, Dan ;
van Eldik, Rudi .
CHEMISTRY-A EUROPEAN JOURNAL, 2009, 15 (33) :8303-8309
[42]   DIMETHYLSULFOXIDE INHIBITS KILLING OF STAPHYLOCOCCUS-AUREUS BY POLYMORPHONUCLEAR LEUKOCYTES [J].
REPINE, JE ;
FOX, RB ;
BERGER, EM .
INFECTION AND IMMUNITY, 1981, 31 (01) :510-513
[43]  
Schwertmann U., 2000, IRON OXIDES LAB PREP, DOI [10.1002/9783527613229, DOI 10.1002/9783527613229]
[44]   Cyclic oxidation and reduction of protein methionine residues is an important antioxidant mechanism [J].
Stadtman, ER ;
Moskovitz, J ;
Berlett, BS ;
Levine, RL .
MOLECULAR AND CELLULAR BIOCHEMISTRY, 2002, 234 (01) :3-9
[45]   Biochemistry of methanogenesis: a tribute to Marjory Stephenson [J].
Thauer, RK .
MICROBIOLOGY-UK, 1998, 144 :2377-2406
[46]  
Tolbert B. M., 1982, ASCORBIC ACID CHEM M, P589
[47]   Methane biogenesis during sodium azide-induced chemical hypoxia in rats [J].
Tuboly, Eszter ;
Szabo, Andrea ;
Garab, Denes ;
Bartha, Gabor ;
Janovszky, Agnes ;
Eros, Gabor ;
Szabo, Anna ;
Mohacsi, Arpad ;
Szabo, Gabor ;
Kaszaki, Jozsef ;
Ghyczy, Miklos ;
Boros, Mihaly .
AMERICAN JOURNAL OF PHYSIOLOGY-CELL PHYSIOLOGY, 2013, 304 (02) :C207-C214
[48]   The reaction of methyl radicals with hydrogen peroxide [J].
Ulanski, P ;
Merenyi, G ;
Lind, J ;
Wagner, R ;
von Sonntag, C .
JOURNAL OF THE CHEMICAL SOCIETY-PERKIN TRANSACTIONS 2, 1999, (04) :673-676
[49]   Effect of UV radiation and temperature on the emission of methane from plant biomass and structural components [J].
Vigano, I. ;
van Weelden, H. ;
Holzinger, R. ;
Keppler, F. ;
McLeod, A. ;
Rockmann, T. .
BIOGEOSCIENCES, 2008, 5 (03) :937-947
[50]   OXIDATION OF METHIONYL RESIDUES IN PROTEINS - TOOLS, TARGETS, AND REVERSAL [J].
VOGT, W .
FREE RADICAL BIOLOGY AND MEDICINE, 1995, 18 (01) :93-105