Approximating the finite Hilbert transform via a companion of Ostrowski's inequality for function of bounded variation and applications

被引:15
作者
Liu, Wenjun [1 ]
Gao, Xingyue [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Stat, Nanjing 210044, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
A companion of Ostrowski's inequality; Finite Hilbert transform; Function of bounded variation; Numerical experiments; CAUCHY PRINCIPAL-VALUE; UNIFORM-CONVERGENCE; QUADRATURE-RULES; DERIVATIVES; MAPPINGS; VALUES;
D O I
10.1016/j.amc.2014.08.099
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The finite Hilbert transform plays an important role in scientific and engineering computing. By using a companion of Ostrowski's inequality for function of bounded variation, we give some new approximations of the finite Hilbert transform, which may have the better error bounds than the known results obtained via Ostrowski type inequality. Some numerical experiments are also presented. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:373 / 385
页数:13
相关论文
共 25 条
[1]  
Alomari M.W., 2011, Trans. J. Math. Mech., V3, P9
[2]  
Alomari M.W., 2012, TRANSYLV J MATH MECH, V4, P103
[3]  
Alomari MW, 2012, KRAGUJEV J MATH, V36, P77
[4]  
[Anonymous], 2002, JIPAM J INEQUAL PURE
[5]  
CRISCUOLO G, 1985, ANAL NUMER THEOR APP, V14, P109
[6]   NUMERICAL-INTEGRATION BASED ON QUASI-INTERPOLATING SPLINES [J].
DAGNINO, C ;
DEMICHELIS, V ;
SANTI, E .
COMPUTING, 1993, 50 (02) :149-163
[7]   Approximating the finite Hilbert transform via trapezoid type inequalities [J].
Dragomir, NM ;
Dragomir, SS ;
Farrell, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (10-11) :1359-1369
[8]  
Dragomir S. S., 2002, RGMIA PREPRINT S, V5
[9]  
Dragomir S.S., 2005, Bull. Korean Math. Soc., V42, P213
[10]   Sharp error bounds of a quadrature rule with one multiple node for the finite Hilbert transform in some classes of continuous differentiable functions [J].
Dragomir, SS .
TAIWANESE JOURNAL OF MATHEMATICS, 2005, 9 (01) :95-109