NUMERICAL-INTEGRATION BASED ON QUASI-INTERPOLATING SPLINES

被引:28
作者
DAGNINO, C [1 ]
DEMICHELIS, V [1 ]
SANTI, E [1 ]
机构
[1] UNIV LAQUILA,FAC INGN,I-67100 LAQUILA,ITALY
关键词
PRODUCT INTEGRATION; CAUCHY PRINCIPAL VALUE INTEGRALS; APPROXIMATING SPLINES; B-SPLINES;
D O I
10.1007/BF02238611
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper product quadrature rules based on quasi-interpolating splines are proposed and convergence results are proved for bounded integrands. Convergence results are also proved for sequences of Cauchy principal value integrals of these quasi-interpolating splines. Some comparisons with other methods and numerical examples are given.
引用
收藏
页码:149 / 163
页数:15
相关论文
共 17 条
[1]   PRODUCT INTEGRATION OF LOGARITHMIC SINGULAR INTEGRANDS BASED ON CUBIC-SPLINES [J].
ALAYLIOGLU, A ;
LUBINSKY, DS ;
EYRE, D .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :353-366
[2]   PRODUCT INTEGRATION OF SINGULAR INTEGRANDS BASED ON CUBIC SPLINE INTERPOLATION AT EQUALLY SPACED NODES [J].
DAGNINO, C .
NUMERISCHE MATHEMATIK, 1990, 57 (01) :97-104
[3]   PRODUCT INTEGRATION OF PIECEWISE CONTINUOUS INTEGRANDS BASED ON CUBIC SPLINE INTERPOLATION AT EQUALLY SPACED NODES [J].
DAGNINO, C ;
ORSI, AP .
NUMERISCHE MATHEMATIK, 1988, 52 (04) :459-466
[4]   ON THE EVALUATION OF ONE-DIMENSIONAL CAUCHY PRINCIPAL VALUE INTEGRALS BY RULES BASED ON CUBIC SPLINE INTERPOLATION [J].
DAGNINO, C ;
SANTI, E .
COMPUTING, 1990, 43 (03) :267-276
[5]   SPLINE PRODUCT QUADRATURE-RULES FOR CAUCHY SINGULAR-INTEGRALS [J].
DAGNINO, C ;
SANTI, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1990, 33 (02) :133-140
[6]   ON THE CONVERGENCE OF SPLINE PRODUCT QUADRATURES FOR CAUCHY PRINCIPAL VALUE INTEGRALS [J].
DAGNINO, C ;
SANTI, E .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 36 (02) :181-187
[7]  
DAGNINO C, 1992, ALGORITHM GENERATION
[8]  
DAGNINO C, 1988, ALGORITHM GENERATION
[9]  
DAGNINO C, UNPUB NUMERICAL INTE
[10]  
DAVIS PJ, 1984, NUMERICAL INTEGRATIO