Remarks on the noncommutative gravitational quantum well

被引:45
作者
Banerjee, Rabin [1 ]
Roy, Binayak Dutta [1 ]
Samanta, Saurav [1 ]
机构
[1] SN Bose Natl Ctr Basic Sci, Kolkata 700098, W Bengal, India
来源
PHYSICAL REVIEW D | 2006年 / 74卷 / 04期
关键词
D O I
10.1103/PhysRevD.74.045015
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
A planar phase space having both position and momentum noncommutativity is defined in a more inclusive setting than that considered elsewhere. The dynamics of a particle in a gravitational quantum well in this space is studied. The use of the WKB approximation and the virial theorem enable analytic discussions on the effect of noncommutativity. Consistent results are obtained following either commutative space or noncommutative space descriptions. Comparison with recent experimental data with cold neutrons at Grenoble imposes an upper bound on the noncommutative parameter. Also, our results are compared with a recent numerical analysis of a similar problem. Finally, we provide a noncommutative version of the virial theorem for the case at hand.
引用
收藏
页数:7
相关论文
共 19 条
[1]   Waves on noncommutative space-time and gamma-ray bursts [J].
Amelino-Camelia, G ;
Majid, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (27) :4301-4323
[2]   A novel approach to noncommutativity in planar quantum mechanics [J].
Banerjee, R .
MODERN PHYSICS LETTERS A, 2002, 17 (11) :631-645
[3]  
BANERJEE R, HEPTH0604162
[4]   Noncommutative gravitational quantum well -: art. no. 025010 [J].
Bertolami, O ;
Rosa, JG ;
de Aragao, CML ;
Castorina, P ;
Zappalà, D .
PHYSICAL REVIEW D, 2005, 72 (02) :1-9
[5]  
BRAU F, HEPTH0605183
[6]  
Dirac P.A.M., 1958, The Principles of Quantum Mechanics
[7]   Noncommutative field theory [J].
Douglas, MR ;
Nekrasov, NA .
REVIEWS OF MODERN PHYSICS, 2001, 73 (04) :977-1029
[8]  
Landau L. D., 1977, QUANTUM MECH NONRELA
[9]   Gauge theory on noncommutative spaces [J].
Madore, J ;
Schraml, S ;
Schupp, P ;
Wess, J .
EUROPEAN PHYSICAL JOURNAL C, 2000, 16 (01) :161-167
[10]   Quantum mechanics on the noncommutative plane and sphere [J].
Nair, VP ;
Polychronakos, AP .
PHYSICS LETTERS B, 2001, 505 (1-4) :267-274