Multiwalled carbon nanotube films as small-sized temperature sensors

被引:102
作者
Di Bartolomeo, A. [1 ,2 ]
Sarno, M. [1 ,2 ,3 ]
Giubileo, F. [1 ,4 ]
Altavilla, C. [1 ,2 ,3 ]
Iemmo, L. [1 ]
Piano, S. [1 ]
Bobba, F. [1 ,2 ,4 ]
Longobardi, M. [1 ]
Scarfato, A.
Sannino, D. [1 ,2 ,3 ]
Cucolo, A. M. [1 ,2 ,4 ]
Ciambelli, P. [3 ,4 ]
机构
[1] Univ Salerno, Dept Phys, I-84081 Baronissi, SA, Italy
[2] Univ Salerno, Res Ctr Nanomat & Nanotechnol, NANO MATES, I-84081 Baronissi, SA, Italy
[3] Univ Salerno, Dept Chem & Food Engn, I-84084 Fisciano, SA, Italy
[4] CNR INFM Reg Lab SUPERMAT, I-84081 Baronissi, SA, Italy
关键词
carbon nanotubes; electrical conductivity transitions; electrical resistivity; nanofabrication; temperature sensors; thermistors; thin films; ELECTRICAL-CONDUCTIVITY; TRANSPORT; GROWTH;
D O I
10.1063/1.3093680
中图分类号
O59 [应用物理学];
学科分类号
摘要
We present the fabrication of thick and dense carbon nanotube networks in the form of freestanding films (CNTFs) and the study of their electric resistance as a function of the temperature, from 4 to 420 K. A nonmetallic behavior with a monotonic R(T) and a temperature coefficient of resistance around -7x10(-4) K-1 is generally observed. A behavioral accordance of the CNTF conductance with the temperature measured by a solid-state thermistor (ZnNO, Si, or Pt) is demonstrated, suggesting the possibility of using CNTFs as temperature small-sized (freely scalable) sensors, besides being confirmed by a wide range of sensitivity, fast response, and good stability and durability. Concerning electric behavior, we also underline that a transition from nonmetal to metal slightly below 273 K has been rarely observed. A model involving regions of highly anisotropic metallic conduction separated by tunneling barrier regions can explain the nonmetallic to metallic crossover based on the competing mechanisms of the metallic resistance rise and the barrier resistance lowering.
引用
收藏
页数:6
相关论文
共 27 条
[11]   Bolometric infrared photoresponse of suspended single-walled carbon nanotube films [J].
Itkis, ME ;
Borondics, F ;
Yu, AP ;
Haddon, RC .
SCIENCE, 2006, 312 (5772) :413-416
[12]   Growth-temperature induced metal-insulator transition in bamboo-shaped multiwalled carbon nanotubes [J].
Jang, JW ;
Lee, DK ;
Lee, CE ;
Lee, TJ ;
Lee, CJ ;
Noh, SJ .
SOLID STATE COMMUNICATIONS, 2002, 124 (04) :147-150
[13]   Heterogeneous model for conduction in carbon nanotubes [J].
Kaiser, AB ;
Dusberg, G ;
Roth, S .
PHYSICAL REVIEW B, 1998, 57 (03) :1418-1421
[14]   Nano temperature sensor using selective lateral growth of carbon nanotube between electrodes [J].
Kuo, Cheng Yung ;
Chan, Chia Lang ;
Gau, Chie ;
Liu, Chien-Wei ;
Shiau, Shiuan Hua ;
Ting, Jyh-Hua .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2007, 6 (01) :63-69
[15]   Quantum transport in a multiwalled carbon nanotube [J].
Langer, L ;
Bayot, V ;
Grivei, E ;
Issi, JP ;
Heremans, JP ;
Olk, CH ;
Stockman, L ;
VanHaesendonck, C ;
Bruynseraede, Y .
PHYSICAL REVIEW LETTERS, 1996, 76 (03) :479-482
[16]  
Ngo Q, 2004, IEEE T NANOTECHNOL, V3, P311, DOI [10.1109/TNANO.2004.828553, 10.1109/tnano.2004.828553]
[17]   IDEAL CONDUCTIVITY OF CARBON PI-POLYMERS AND INTERCALATION COMPOUNDS [J].
PIETRONERO, L .
SYNTHETIC METALS, 1983, 8 (3-4) :225-231
[18]   Room temperature ballistic conduction in carbon nanotubes [J].
Poncharal, P ;
Berger, C ;
Yi, Y ;
Wang, ZL ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2002, 106 (47) :12104-12118
[19]   Diameter-selective Raman scattering from vibrational modes in carbon nanotubes [J].
Rao, AM ;
Richter, E ;
Bandow, S ;
Chase, B ;
Eklund, PC ;
Williams, KA ;
Fang, S ;
Subbaswamy, KR ;
Menon, M ;
Thess, A ;
Smalley, RE ;
Dresselhaus, G ;
Dresselhaus, MS .
SCIENCE, 1997, 275 (5297) :187-191
[20]   Thermopower and resistivity of carbon nanotube networks and organic conducting polymers [J].
Rogers, SA ;
Kaiser, AB .
CURRENT APPLIED PHYSICS, 2004, 4 (2-4) :407-410