Artificial Solid Electrolyte Interphase To Address the Electrochemical Degradation of Silicon Electrodes

被引:146
作者
Li, Juchuan [1 ]
Dudney, Nancy J. [1 ]
Nanda, Jagjit [1 ]
Liang, Chengdu [2 ]
机构
[1] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
silicon anodes; artificial solid electrolyte interphase; electrochemical degradation; solid electrolyte; lithium-ion batteries; LITHIUM-ION BATTERY; HIGH-PERFORMANCE; NEGATIVE ELECTRODES; NANOSILICON ELECTRODES; HIGH-CAPACITY; FILM ANODE; CONDUCTION; TRANSPORT; NANOSCALE; PARTICLES;
D O I
10.1021/am5009419
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Electrochemical degradation on silicon (Si) anodes prevents them from being successfully used in lithium (Li)-ion battery full cells. Unlike the case of graphite anodes, the natural solid electrolyte interphase (SE!) films generated from carbonate electrolytes do not self-passivate on Si, causing continuous electrolyte decomposition and loss of Li ions. In this work, we aim at solving the issue of electrochemical degradation by fabricating artificial SEI films using a solid electrolyte material, lithium phosphorus oxynitride (Lipon), which conducts Li ions and blocks electrons. For Si anodes coated with Lipon of 50 nm or thicker, a significant effect is observed in suppressing electrolyte decomposition, while Lipon of thinner than 40 nm has a limited effect. Ionic and electronic conductivity measurements reveal that the artificial SEI is effective when it is a pure ionic conductor, but electrolyte decomposition is only partially suppressed when the artificial SEI is a mixed electronic-ionic conductor. The critical thickness for this transition in conducting behavior is found to be 40-50 nm. This work provides guidance for designing artificial SEI films for high-capacity Li-ion battery electrodes using solid electrolyte materials.
引用
收藏
页码:10083 / 10088
页数:6
相关论文
共 49 条
[1]   Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries [J].
Arreaga-Salas, David E. ;
Sra, Amandeep K. ;
Roodenko, Katy ;
Chabal, Yves J. ;
Hinkle, Christopher L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :9072-9077
[2]   FABRICATION AND CHARACTERIZATION OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS AND RECHARGEABLE THIN-FILM BATTERIES [J].
BATES, JB ;
DUDNEY, NJ ;
GRUZALSKI, GR ;
ZUHR, RA ;
CHOUDHURY, A ;
LUCK, CF ;
ROBERTSON, JD .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :103-110
[3]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[4]   Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries [J].
Chen, Libao ;
Wang, Ke ;
Xie, Xiaohua ;
Xie, Jingying .
JOURNAL OF POWER SOURCES, 2007, 174 (02) :538-543
[5]   Inorganic Glue Enabling High Performance of Silicon Particles as Lithium Ion Battery Anode [J].
Cui, Li-Feng ;
Hu, Liangbing ;
Wu, Hui ;
Choi, Jang Wook ;
Cui, Yi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) :A592-A596
[6]   Correlation between irreversible capacity and electrolyte solvents degradation probed by NMR in Si-based negative electrode of Li-ion cell [J].
Delpuech, N. ;
Dupre, N. ;
Mazouzi, D. ;
Gaubicher, J. ;
Moreau, P. ;
Bridel, J. S. ;
Guyomard, D. ;
Lestriez, B. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 33 :72-75
[7]   Modeling diffusion-induced stress in nanowire electrode structures [J].
Deshpande, Rutooj ;
Cheng, Yang-Tse ;
Verbrugge, Mark W. .
JOURNAL OF POWER SOURCES, 2010, 195 (15) :5081-5088
[8]   HWCVD MoO3 nanoparticles and a-Si for next generation Li-ion anodes [J].
Dillon, A. C. ;
Riley, L. A. ;
Jung, Y. S. ;
Ban, C. ;
Molina, D. ;
Mahan, A. H. ;
Cavanagh, A. S. ;
George, S. M. ;
Lee, S-H .
THIN SOLID FILMS, 2011, 519 (14) :4495-4497
[9]   A new advanced lithium ion battery: Combination of high performance amorphous columnar silicon thin film anode, 5 V LiNi0.5Mn1.5O4 spinel cathode and fluoroethylene carbonate-based electrolyte solution [J].
Fridman, K. ;
Sharabi, R. ;
Elazari, R. ;
Gershinsky, G. ;
Markevich, E. ;
Salitra, G. ;
Aurbach, D. ;
Garsuch, A. ;
Lampert, J. .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 33 :31-34
[10]   Double layer capacitance of anode/solid-electrolyte interfaces [J].
Ge, Xiaoming ;
Fu, Changjing ;
Chan, Siew Hwa .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2011, 13 (33) :15134-15142