Convergence rates for posterior distributions and adaptive estimation

被引:26
作者
Huang, TM [1 ]
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
关键词
convergence rate; nonparametric regression; density estimation; Bayesian; adaptive estimation; sieves;
D O I
10.1214/009053604000000490
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The goal of this paper is to provide theorems on convergence rates of posterior distributions that can be applied to obtain good convergence rates in the context of density estimation as well as regression. We show how to choose priors so that the posterior distributions converge at the optimal rate without prior knowledge of the degree of smoothness of the density function or the regression function to be estimated.
引用
收藏
页码:1556 / 1593
页数:38
相关论文
共 16 条
[1]  
Barron A, 1999, ANN STAT, V27, P536
[2]   Risk bounds for model selection via penalization [J].
Barron, A ;
Birgé, L ;
Massart, P .
PROBABILITY THEORY AND RELATED FIELDS, 1999, 113 (03) :301-413
[3]   APPROXIMATION OF DENSITY-FUNCTIONS BY SEQUENCES OF EXPONENTIAL-FAMILIES [J].
BARRON, AR ;
SHEU, CH .
ANNALS OF STATISTICS, 1991, 19 (03) :1347-1369
[4]  
Belitser E, 2003, ANN STAT, V31, P536
[5]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[6]  
DIACONIS P, 1986, ANN STAT, V14, P1, DOI 10.1214/aos/1176349830
[7]  
Doob J. L., 1949, Colloques Intemationaux du Centre National de la Recherche Scientique, P23
[8]   Convergence rates of posterior distributions [J].
Ghosal, S ;
Ghosh, JK ;
Van der Vaart, AW .
ANNALS OF STATISTICS, 2000, 28 (02) :500-531
[9]  
Ghosal S, 1999, ANN STAT, V27, P143
[10]  
Kolmogorov A.N., 1961, Amer. Math. Soc. Transl., V17, P277