Rhomboid Protease Dynamics and Lipid Interactions

被引:97
作者
Bondar, Ana-Nicoleta [1 ,2 ]
del Val, Coral [3 ]
White, Stephen H. [1 ,2 ]
机构
[1] Univ Calif Irvine, Dept Physiol & Biophys, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Ctr Biomembrane Syst, Irvine, CA 92697 USA
[3] Univ Granada, Dept Comp Sci & Artificial Intelligence, E-18071 Granada, Spain
关键词
FAMILY INTRAMEMBRANE PROTEASE; SIGNAL PEPTIDE PEPTIDASE; MOLECULAR-DYNAMICS; DROSOPHILA RHOMBOID-1; PROTEOLYTIC ACTIVITY; ASPARTIC PROTEASE; SERINE PROTEASES; IN-VITRO; GLPG; MEMBRANE;
D O I
10.1016/j.str.2008.12.017
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Intramembrane proteases, which cleave transmembrane (TM) helices, participate in numerous biological processes encompassing all branches of life. Several crystallographic structures of Escherichia coli GIpG rhomboid protease have been determined. In order to understand GIpG dynamics and lipid interactions in a native-like environment, we have examined the molecular dynamics of wild-type and mutant GIpG in different membrane environments. The irregular shape and small hydrophobic thickness of the protein cause significant bilayer deformations that may be important for substrate entry into the active site. Hydrogen-bond interactions with lipids are paramount in protein orientation and dynamics. Mutations in the unusual L1 loop cause changes in protein dynamics and protein orientation that are relayed to the His-Ser catalytic dyad. Similarly, mutations in TM5 change the dynamics and structure of the L1 loop. These results imply that the L1 loop has an important regulatory role in proteolysis.
引用
收藏
页码:395 / 405
页数:11
相关论文
共 45 条
[1]   Enzymatic analysis of a rhomboid intramembrane protease implicates transmembrane helix 5 as the lateral substrate gate [J].
Baker, Rosanna P. ;
Young, Keith ;
Feng, Liang ;
Shi, Yigong ;
Urban, Sinisa .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (20) :8257-8262
[2]   Electrostatic effects in a network of polar and ionizable groups in staphylococcal nuclease [J].
Baran, Kelli L. ;
Chimenti, Michael S. ;
Schlessman, Jamie L. ;
Fitch, Carolyn A. ;
Herbst, Katie J. ;
Garcia-Moreno, Bertrand E. .
JOURNAL OF MOLECULAR BIOLOGY, 2008, 379 (05) :1045-1062
[3]   Structural basis for intramembrane proteolysis by rhomboid serine proteases [J].
Ben-Shem, Adam ;
Fass, Deborah ;
Bibi, Eitan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (02) :462-466
[4]   RHOMBOID, A GENE REQUIRED FOR DORSOVENTRAL AXIS ESTABLISHMENT AND PERIPHERAL NERVOUS-SYSTEM DEVELOPMENT IN DROSOPHILA-MELANOGASTER [J].
BIER, E ;
JAN, LY ;
JAN, YN .
GENES & DEVELOPMENT, 1990, 4 (02) :190-203
[5]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[6]   The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor [J].
Brown, MS ;
Goldstein, JL .
CELL, 1997, 89 (03) :331-340
[7]   Functional characterization of Escherichia coli GlpG and additional rhomboid proteins using an aarA mutant of Providencia stuartii [J].
Clemmer, KM ;
Sturgill, GM ;
Veenstra, A ;
Rather, PN .
JOURNAL OF BACTERIOLOGY, 2006, 188 (09) :3415-3419
[8]   PARTICLE MESH EWALD - AN N.LOG(N) METHOD FOR EWALD SUMS IN LARGE SYSTEMS [J].
DARDEN, T ;
YORK, D ;
PEDERSEN, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12) :10089-10092
[9]   CONSTANT-PRESSURE MOLECULAR-DYNAMICS SIMULATION - THE LANGEVIN PISTON METHOD [J].
FELLER, SE ;
ZHANG, YH ;
PASTOR, RW ;
BROOKS, BR .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (11) :4613-4621
[10]   The Pfam protein families database [J].
Finn, Robert D. ;
Tate, John ;
Mistry, Jaina ;
Coggill, Penny C. ;
Sammut, Stephen John ;
Hotz, Hans-Rudolf ;
Ceric, Goran ;
Forslund, Kristoffer ;
Eddy, Sean R. ;
Sonnhammer, Erik L. L. ;
Bateman, Alex .
NUCLEIC ACIDS RESEARCH, 2008, 36 :D281-D288