Generating Genome-Scale Candidate Gene Lists for Pharmacogenomics

被引:50
作者
Hansen, N. T. [1 ,3 ]
Brunak, S. [3 ]
Altman, R. B. [1 ,2 ]
机构
[1] Stanford Univ, Dept Bioengn, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Genet, Stanford, CA 94305 USA
[3] Tech Univ Denmark, Ctr Biol Sequence Anal, DK-2800 Lyngby, Denmark
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
INTERACTION NETWORKS; WIDE ASSOCIATION; CELL-LINES; WARFARIN; EXPRESSION; VARIANTS; CYTOTOXICITY; GEMCITABINE; CHALLENGES; PROFILES;
D O I
10.1038/clpt.2009.42
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A critical task in pharmacogenomics is identifying genes that may be important modulators of drug response. High-throughput experimental methods are often plagued by false positives and do not take advantage of existing knowledge. Candidate gene lists can usefully summarize existing knowledge, but they are expensive to generate manually and may therefore have incomplete coverage. We have developed a method that ranks 12,460 genes in the human genome on the basis of their potential relevance to a specific query drug and its putative indications. Our method uses known gene-drug interactions, networks of gene-gene interactions, and available measures of drug-drug similarity. It ranks genes by building a local network of known interactions and assessing the similarity of the query drug (by both structure and indication) with drugs that interact with gene products in the local network. In a comprehensive benchmark, our method achieves an overall area under the curve of 0.82. To showcase our method, we found novel gene candidates for warfarin, gefitinib, carboplatin, and gemcitabine, and we provide the molecular hypotheses for these predictions.
引用
收藏
页码:183 / 189
页数:7
相关论文
共 30 条
[1]  
[Anonymous], Data Mining Practical Machine Learning Tools and Techniques with Java
[2]  
Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
[3]   Genome-wide pharmacogenomic analysis of the response to interferon β therapy in multiple sclerosis [J].
Byun, Esther ;
Caillier, Stacy J. ;
Montalban, Xavier ;
Villoslada, Pablo ;
Fernandez, Oscar ;
Brassat, David ;
Comabella, Manuel ;
Wang, Joanne ;
Barcellos, Lisa F. ;
Baranzini, Sergio E. ;
Oksenberg, Jorge R. .
ARCHIVES OF NEUROLOGY, 2008, 65 (03) :337-E2
[4]   CYP4F2 genetic variant alters required warfarin dose [J].
Caldwell, Michael D. ;
Awad, Tarif ;
Johnson, Julie A. ;
Gage, Brian F. ;
Falkowski, Mat ;
Gardina, Paul ;
Hubbard, Jason ;
Turpaz, Yaron ;
Langaee, Taimour Y. ;
Eby, Charles ;
King, Cristi R. ;
Brower, Amy ;
Schmelzer, John R. ;
Glurich, Ingrid ;
Vidaillet, Humberto J. ;
Yale, Steven H. ;
Zhang, Kai Qi ;
Berg, Richard L. ;
Burmester, James K. .
BLOOD, 2008, 111 (08) :4106-4112
[5]   Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines [J].
Coldren, Christopher D. ;
Helfrich, Barbara A. ;
Witta, Samir E. ;
Sugita, Michio ;
Lapadat, Razvan ;
Zeng, Chan ;
Baron, Anna ;
Franklin, Wilbur A. ;
Hirsch, Fred R. ;
Geraci, Mark W. ;
Bunn, Paul A., Jr. .
MOLECULAR CANCER RESEARCH, 2006, 4 (08) :521-528
[6]   A genome-wide scan for common genetic variants with a large influence on warfarin maintenance dose [J].
Cooper, Gregory M. ;
Johnson, Julie A. ;
Langaee, Taimour Y. ;
Feng, Hua ;
Stanaway, Ian B. ;
Schwarz, Ute I. ;
Ritchie, Marylyn D. ;
Stein, C. Michael ;
Roden, Dan M. ;
Smith, Joshua D. ;
Veenstra, David L. ;
Rettie, Allan E. ;
Rieder, Mark J. .
BLOOD, 2008, 112 (04) :1022-1027
[7]   Beyond genomics [J].
Dollery, C. T. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2007, 82 (04) :366-370
[8]   Cancer biology - Signatures guide drug choice [J].
Downward, J .
NATURE, 2006, 439 (7074) :274-275
[9]   A big step forward for individualized medicine: enlightened dosing of warfarin [J].
Elias, Darlene J. ;
Topol, Eric J. .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2008, 16 (05) :532-534
[10]   Pharmacogenetics goes genomic [J].
Goldstein, DB ;
Tate, SK ;
Sisodiya, SM .
NATURE REVIEWS GENETICS, 2003, 4 (12) :937-947