Periodic solutions of planar systems with two delays

被引:73
作者
Ruan, SG [1 ]
Wei, JJ
机构
[1] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 3J5, Canada
[2] NE Normal Univ, Dept Math, Changchun 130024, Peoples R China
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1017/S0308210500031061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a planar system with two delays: (x) over dot(1)(t) = -a(0)x(1)(t) + a(1)F(1)(x(1)(t - tau(1)), x(2)(t - tau(2))), (x) over dot(2)(t) = -b(0)x(2)(t) + b(1)F(2)(x(1)(t - tau(1)), x(2)(t - tau(2))). Firstly, linearized stability and local Hopf bifurcations are studied. Then, existence conditions for non-constant periodic solutions are derived using degree theory methods. Finally, a simple neural network model. with two delays is analysed as an example.
引用
收藏
页码:1017 / 1032
页数:16
相关论文
共 26 条
[1]  
[Anonymous], 1979, J MATH ANAL APPL
[2]   On the existence and global bifurcation of periodic solutions to planar differential delay equations [J].
Baptistini, MZ ;
Taboas, PZ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 127 (02) :391-425
[3]   FULLER INDEX AND GLOBAL HOPF BIFURCATION [J].
CHOW, SN ;
MALLETPARET, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1978, 29 (01) :66-85
[4]   PERIODIC-SOLUTIONS OF AUTONOMOUS EQUATIONS [J].
CHOW, SN ;
HALE, JK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 66 (03) :495-506
[5]   EXISTENCE OF PERIODIC-SOLUTIONS OF AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS [J].
CHOW, SN .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1974, 15 (02) :350-378
[6]   DISCRETE DELAY, DISTRIBUTED DELAY AND STABILITY SWITCHES [J].
COOKE, KL ;
GROSSMAN, Z .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1982, 86 (02) :592-627
[7]  
Dieudonne J., 1960, FDN MODERN ANAL
[8]   S(1)-DEGREE AND GLOBAL HOPF-BIFURCATION THEORY OF FUNCTIONAL-DIFFERENTIAL EQUATIONS [J].
ERBE, LH ;
KRAWCEWICZ, W ;
GEBA, K ;
WU, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 98 (02) :277-298
[9]   Stability and existence of periodic solutions of a functional differential equation [J].
Godoy, SMS ;
dosReis, JG .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 198 (02) :381-398
[10]   Delay induced periodicity in a neural netlet of excitation and inhibition [J].
Gopalsamy, K ;
Leung, I .
PHYSICA D, 1996, 89 (3-4) :395-426