Transition probability-based indicator geostatistics

被引:332
作者
Carle, SF
Fogg, GE
机构
来源
MATHEMATICAL GEOLOGY | 1996年 / 28卷 / 04期
关键词
cokriging; cross-covariance; cross-variogram;
D O I
10.1007/BF02083656
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Traditionally, spatial continuity models for indicator variables are developed by empirical curve-fitting to the sample indicator (cross-) variogram. However, geologic data may be too sparse to permit a purely empirical approach, particularly in application to the subsurface. Techniques for model synthesis that integrate hard data and conceptual models therefore are needed. Interpretability is crucial. Compared with the indicator (cross-) variogram or indicator (cross-) covariance, the transition probability is more interpretable. Information on proportion, mean length, and juxtapositioning directly relates to the transition probability; asymmetry can be considered. Furthermore, the transition probability elucidates order relation conditions and readily formulates the indicator (co)kirging equations.
引用
收藏
页码:453 / 476
页数:24
相关论文
共 21 条
[1]  
ALLEN JRL, 1970, J SEDIMENT PETROL, V40, P298
[2]  
[Anonymous], 1989, FLOW TRANSPORT POROU, DOI DOI 10.1007/978-3-642-75015-1
[3]   POSITIVE DEFINITENESS IS NOT ENOUGH [J].
ARMSTRONG, M .
MATHEMATICAL GEOLOGY, 1992, 24 (01) :135-143
[4]   ON THE PROBLEM OF PERMISSIBLE COVARIANCE AND VARIOGRAM MODELS [J].
CHRISTAKOS, G .
WATER RESOURCES RESEARCH, 1984, 20 (02) :251-265
[5]  
Deutsch C. V., 1992, GSLIB GEOSTATISTICAL
[6]  
GOOVAERTS P, 1994, QUANT GEO G, V6, P18
[7]   COMPARATIVE PERFORMANCE OF INDICATOR ALGORITHMS FOR MODELING CONDITIONAL-PROBABILITY DISTRIBUTION-FUNCTIONS [J].
GOOVAERTS, P .
MATHEMATICAL GEOLOGY, 1994, 26 (03) :389-411
[8]  
Horn R.A., 1991, TOPICS MATRIX ANAL
[9]   Non-Gaussian data expansion in the Earth Sciences [J].
Journel, A. G. ;
Alabert, F. .
TERRA NOVA, 1989, 1 (02) :123-134
[10]  
Journel A. G., 1978, Mining geostatistics