Many astrophysical flows occur in inhomogeneous (clumpy) media. We present results of a numerical study of steady, planar shocks interacting with a system of embedded cylindrical clouds. Our study uses a two-dimensional geometry. Our numerical code uses an adaptive mesh refinement, allowing us to achieve sufficiently high resolution both at the largest and the smallest scales. We neglect any radiative losses, heat conduction, and gravitational forces. Detailed analysis of the simulations shows that interaction of embedded inhomogeneities with the shock/postshock wind depends primarily on the thickness of the cloud layer and arrangement of the clouds in the layer. The total cloud mass and the total number of individual clouds is not a significant factor. We de ne two classes of cloud distributions: thin and thick layers. We define the critical cloud separation along the direction of the flow and perpendicular to it, distinguishing between the interacting and noninteracting regimes of cloud evolution. Finally, we discuss mass loading and mixing in such systems.