Astrocyte influences on ischemic neuronal death

被引:365
作者
Swanson, RA
Ying, W
Kauppinen, TM
机构
[1] Vet Affairs Med Ctr, Dept Neurol, San Francisco, CA 94121 USA
[2] Univ Calif San Francisco, San Francisco, CA 94143 USA
关键词
D O I
10.2174/1566524043479185
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Glutamate excitotoxicity, oxidative stress, and acidosis are primary mediators of neuronal death during ischemia and reperfusion. Astrocytes influence these processes in several ways. Glutamate uptake by astrocytes normally prevents excitotoxic glutamate elevations in brain extracellular space, and this process appears to be a critical determinant of neuronal survival in the ischemic penumbra. Conversely, glutamate efflux from astrocytes by reversal of glutamate uptake, volume sensitive organic ion channels, and other routes may contribute to extracellular glutamate elevations. Glutamate activation of neuronal N-methyl-D-aspartate (NMDA) receptors is modulated by glycine and D-serine: both of these neuromodulators are transported by astrocytes, and D-serine production is localized exclusively to astrocytes. Astrocytes influence neuronal antioxidant status through release of ascorbate and uptake of its oxidized form, dehydroascorbate, and by indirectly supporting neuronal glutathione metabolism. In addition, glutathione in astrocytes can serve as a sink for nitric oxide and thereby reduce neuronal oxidant stress during ischemia. Astrocytes probably also influence neuronal survival in the post-ischemic period. Reactive astrocytes secrete nitric oxide, TNFalpha, matrix metalloproteinases, and other factors that can contribute to delayed neuronal death, and facilitate brain edema via aquaporin-4 channels localized to the astrocyte endfoot-endothelial interface. On the other hand erythropoietin, a paracrine messenger in brain, is produced by astrocytes and upregulated after ischemia. Erythropoietin stimulates the Janus kinase-2 (JAK-2) and nuclear factor-kappaB (NF-kB) signaling pathways in neurons to prevent programmed cell death after ischemic or excitotoxic stress. Astrocytes also secrete several angiogenic and neurotrophic factors that are important for vascular and neuronal regeneration after stroke.
引用
收藏
页码:193 / 205
页数:13
相关论文
共 245 条
[1]   Astrocyte-endothelial interactions and blood-brain barrier permeability [J].
Abbott, NJ .
JOURNAL OF ANATOMY, 2002, 200 (06) :629-638
[2]   ASTROCYTE ENDOTHELIAL INTERACTION - PHYSIOLOGY AND PATHOLOGY [J].
ABBOTT, NJ ;
REVEST, PA ;
ROMERO, IA .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1992, 18 (05) :424-433
[3]   Inflammatory mediators and modulation of blood-brain barrier permeability [J].
Abbott, NJ .
CELLULAR AND MOLECULAR NEUROBIOLOGY, 2000, 20 (02) :131-147
[4]   Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and-2 suggests an important role of astrocytes in cerebellar vascularization [J].
Acker, T ;
Beck, H ;
Plate, KH .
MECHANISMS OF DEVELOPMENT, 2001, 108 (1-2) :45-57
[5]   Aquaporin water channels - from atomic structure to clinical medicine [J].
Agre, P ;
King, LS ;
Yasui, M ;
Guggino, WB ;
Ottersen, OP ;
Fujiyoshi, Y ;
Engel, A ;
Nielsen, S .
JOURNAL OF PHYSIOLOGY-LONDON, 2002, 542 (01) :3-16
[6]   Ischemia-induced interleukin-6 as a potential endogenous neuroprotective cytokine against NMDA receptor-mediated excitoxicity in the brain [J].
Ali, C ;
Nicole, O ;
Docagne, F ;
Lesne, S ;
MacKenzie, ET ;
Nouvelot, A ;
Buisson, A ;
Vivien, D .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2000, 20 (06) :956-966
[7]   An α-syntrophin-dependent pool of AQP4 in astroglial end-feet confers bidirectional water flow between blood and brain [J].
Amiry-Moghaddam, M ;
Otsuka, T ;
Hurn, PD ;
Traystman, RJ ;
Haug, FM ;
Froehner, SC ;
Adams, ME ;
Neely, JD ;
Agre, P ;
Ottersen, OPT ;
Bhardwaj, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (04) :2106-2111
[8]  
Anderson CM, 2000, GLIA, V32, P1
[9]   ELEVATION OF THE EXTRACELLULAR CONCENTRATIONS OF GLUTAMATE AND ASPARTATE IN RAT HIPPOCAMPUS DURING TRANSIENT CEREBRAL-ISCHEMIA MONITORED BY INTRACEREBRAL MICRODIALYSIS [J].
BENVENISTE, H ;
DREJER, J ;
SCHOUSBOE, A ;
DIEMER, NH .
JOURNAL OF NEUROCHEMISTRY, 1984, 43 (05) :1369-1374
[10]  
BenYoseph O, 1996, J NEUROCHEM, V66, P2329