The Grassmann-Berezin calculus and theorems of the matrix-tree type

被引:42
作者
Abdesselam, A [1 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France
关键词
matrix-tree theorem; Pfaffian-tree theorem; fennionic integration; hyper-Pfaffian; cacti;
D O I
10.1016/j.aam.2003.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove two generalizations of the matrix-tree theorem. The first one, a result essentially due to Moon for which we provide a new proof, extends the "all minors" matrix-tree theorem to the "massive" case where no condition on row or column sums is imposed. The second generalization, which is new, extends the recently discovered Pfaffian-tree theorem of Masbaum and Vaintrob into a "hyper-Pfaffian-cactus" theorem. Our methods are noninductive, explicit and make critical use of the Grassmann-Berezin calculus that was developed for the needs of modern theoretical physics. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 33 条
[1]  
Abdesselam A., 1995, LECT NOTES PHYSICS, V446, P7
[2]   NEW ALGORITHMS FOR LINEAR K-MATROID INTERSECTION AND MATROID K-PARITY PROBLEMS [J].
BARVINOK, AI .
MATHEMATICAL PROGRAMMING, 1995, 69 (03) :449-470
[3]  
Belkale P, 2003, DUKE MATH J, V116, P147
[4]  
Berezin F. A., 1987, Mathematical Physics and Applied Mathematics, V9
[5]   Enumeration of m-ary cacti [J].
Bóna, M ;
Bousquet, M ;
Labelle, G ;
Leroux, P .
ADVANCES IN APPLIED MATHEMATICS, 2000, 24 (01) :22-56
[6]  
Borchardt C.W., 1860, J REINE ANGEWANDTE M, V1860, P111, DOI [10.1515/crll.1860.57.111, 10.1515/crll.1860.57.111.1,4, DOI 10.1515/CRLL.1860.57.111.1,4]
[7]   Branched polymers and dimensional reduction [J].
Brydges, DC ;
Imbrie, JZ .
ANNALS OF MATHEMATICS, 2003, 158 (03) :1019-1039
[8]   MAYER EXPANSIONS AND THE HAMILTON-JACOBI EQUATION .2. FERMIONS, DIMENSIONAL REDUCTION FORMULAS [J].
BRYDGES, DC ;
WRIGHT, JD .
JOURNAL OF STATISTICAL PHYSICS, 1988, 51 (3-4) :435-456
[9]  
BRYDGES DC, 1988, CMS C P, V9, P181
[10]   A COMBINATORIAL PROOF OF THE ALL MINORS MATRIX TREE THEOREM [J].
CHAIKEN, S .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (03) :319-329