The Grassmann-Berezin calculus and theorems of the matrix-tree type

被引:42
作者
Abdesselam, A [1 ]
机构
[1] Univ Paris 13, CNRS, UMR 7539, LAGA, F-93430 Villetaneuse, France
关键词
matrix-tree theorem; Pfaffian-tree theorem; fennionic integration; hyper-Pfaffian; cacti;
D O I
10.1016/j.aam.2003.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove two generalizations of the matrix-tree theorem. The first one, a result essentially due to Moon for which we provide a new proof, extends the "all minors" matrix-tree theorem to the "massive" case where no condition on row or column sums is imposed. The second generalization, which is new, extends the recently discovered Pfaffian-tree theorem of Masbaum and Vaintrob into a "hyper-Pfaffian-cactus" theorem. Our methods are noninductive, explicit and make critical use of the Grassmann-Berezin calculus that was developed for the needs of modern theoretical physics. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:51 / 70
页数:20
相关论文
共 33 条
[21]  
Kontsevich Maxim, 1997, GELF SEM TALK RUTG U
[22]   Pfaffian and Hafnian identities in shuffle algebras [J].
Luque, JG ;
Thibon, JY .
ADVANCES IN APPLIED MATHEMATICS, 2002, 29 (04) :620-646
[23]  
MASBAUM G, 2001, MATHGT0111102
[24]  
MASBAUM G, 2000, MATH RES NOTICES, P1397
[25]   LINK GROUPS [J].
MILNOR, J .
ANNALS OF MATHEMATICS, 1954, 59 (02) :177-195
[26]   SOME DETERMINANT EXPANSIONS AND THE MATRIX-TREE THEOREM [J].
MOON, JW .
DISCRETE MATHEMATICS, 1994, 124 (1-3) :163-171
[27]  
SALMHOFER M, 1999, TEXTS MONOGR PHYS
[28]   Bounds on the complex zeros of (Di)Chromatic polynomials and Potts-model partition functions [J].
Sokal, AD .
COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (01) :41-77
[29]  
Stanley Richard P., 1998, ANN COMB, V2, P351
[30]  
Stembridge J. R., 1998, ANN COMB, V2, P365, DOI [DOI 10.1007/BF01608531, 10.1007/BF01608531. MR1774975, DOI 10.1007/BF01608531.MR1774975]