Universal homodyne tomography with a single local oscillator

被引:15
作者
D'Ariano, GM [1 ]
Sacchi, MF
Kumar, P
机构
[1] Univ Pavia, Dipartimento Fis A Volta, Via A Bassi 6, I-27100 Pavia, Italy
[2] INFM, I-27100 Pavia, Italy
[3] Northwestern Univ, Dept Elect & Comp Engn, Evanston, IL 60208 USA
来源
PHYSICAL REVIEW A | 2000年 / 61卷 / 01期
关键词
D O I
10.1103/PhysRevA.61.013806
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a general method for measuring an arbitrary observable of a multimode electromagnetic field using homodyne detection with a single local oscillator. In this method the local oscillator scans over all possible linear combinations of the modes. The case of two modes is analyzed in detail and the feasibility of the measurement is studied on the basis of Monte Carlo simulations. We also provide an application of this method in tomographic testing of the Greenberger-Horne-Zeilinger state.
引用
收藏
页数:8
相关论文
共 24 条
[1]   Maximum-likelihood estimation of photon-number distribution from homodyne statistics [J].
Banaszek, K .
PHYSICAL REVIEW A, 1998, 57 (06) :5013-5015
[2]   Measurement of the quantum states of squeezed light [J].
Breitenbach, G ;
Schiller, S ;
Mlynek, J .
NATURE, 1997, 387 (6632) :471-475
[3]   Reconstruction of Wigner functions on different observation levels [J].
Buzek, V ;
Adam, G ;
Drobny, G .
ANNALS OF PHYSICS, 1996, 245 (01) :37-97
[4]   Self-homodyne tomography of a twin-beam state [J].
D'Ariano, GM ;
Vasilyev, M ;
Kumar, P .
PHYSICAL REVIEW A, 1998, 58 (01) :636-648
[5]   HOMODYNE DETECTION OF THE DENSITY-MATRIX OF THE RADIATION-FIELD [J].
DARIANO, GM ;
LEONHARDT, U ;
PAUL, H .
PHYSICAL REVIEW A, 1995, 52 (03) :R1801-R1804
[6]  
DAriano GM, 1997, QUANTUM COMMUNICATION, COMPUTING, AND MEASUREMENT, P253
[7]  
DARIANO GM, 1997, QUANTUM OPTICS SPECT, P139
[8]   EXPERIMENTAL-DETERMINATION OF THE QUANTUM-MECHANICAL STATE OF A MOLECULAR VIBRATIONAL-MODE USING FLUORESCENCE TOMOGRAPHY [J].
DUNN, TJ ;
WALMSLEY, IA ;
MUKAMEL, S .
PHYSICAL REVIEW LETTERS, 1995, 74 (06) :884-887
[9]   Can quantum-mechanical description of physical reality be considered complete? [J].
Einstein, A ;
Podolsky, B ;
Rosen, N .
PHYSICAL REVIEW, 1935, 47 (10) :0777-0780
[10]  
GRADSTEIN IS, 1980, TABLE INTEGRALS SERI