Atomistic modeling of diffusion in aluminum

被引:12
作者
Grabowski, S [1 ]
Kadau, K [1 ]
Entel, P [1 ]
机构
[1] Gerhard Mercator Univ Duisburg, D-47048 Duisburg, Germany
关键词
self-diffusion; vacancy migration; molecular-dynamics simulation;
D O I
10.1080/01411590290023157
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
We present molecular-dynamics simulations of self-diffusion in Al. In order to facilitate the description of elastic and vibrational properties as well as vacancy migration, an embedded-atom method potential was used in the simulations. This potential was specifically designed to reproduce the T = 0 K equation of state of Al obtained by ab initio total-energy calculations. We show that the temperature dependent self-diffusion coefficient obeys an Arrhenius law and that the resulting dynamical migration energy is slightly larger than the static migration energy obtained by using classical rate theory.
引用
收藏
页码:265 / 272
页数:8
相关论文
共 22 条
[11]  
KOHLER U, 1988, PHILOS MAG A, V58, P769, DOI 10.1080/01418618808209952
[12]   Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
PHYSICAL REVIEW B, 1996, 54 (16) :11169-11186
[13]  
LORENZI GD, 1987, PHYS REV B, V36, P9461
[14]  
LORENZI GD, 1992, EUROPHYS LETT, V20, P349
[15]   JUMP RATE OF THE FCC VACANCY IN THE SHORT-MEMORY AUGMENTED-RATE-THEORY APPROXIMATION .2. DYNAMICAL CONVERSION COEFFICIENT AND ISOTOPE-EFFECT FACTOR [J].
MARCHESE, M ;
JACUCCI, G ;
FLYNN, CP .
PHYSICAL REVIEW B, 1987, 36 (18) :9469-9481
[16]  
MIKHIN AG, 1993, J PHYS CONDENS MATT, V5, P912
[17]   A MOLECULAR-DYNAMICS METHOD FOR SIMULATIONS IN THE CANONICAL ENSEMBLE [J].
NOSE, S .
MOLECULAR PHYSICS, 1984, 52 (02) :255-268
[18]  
Rapaport D. C., 2004, ART MOL DYNAMICS SIM
[19]   QUASI-HARMONIC AND MOLECULAR-DYNAMICS STUDY OF THE MARTENSITIC-TRANSFORMATION IN NI-AL ALLOYS [J].
RUBINI, S ;
BALLONE, P .
PHYSICAL REVIEW B, 1993, 48 (01) :99-111
[20]   Molecular-dynamics study of self-diffusion in Na: Validity of transition-state theory [J].
Schott, V ;
Fahnle, M ;
Seeger, A .
PHYSICAL REVIEW B, 1997, 56 (13) :7771-7774