Mutagenesis of the Bacterial RNA Polymerase Alpha Subunit for Improvement of Complex Phenotypes

被引:62
作者
Klein-Marcuschamer, Daniel [1 ]
Santos, Christine Nicole S. [1 ]
Yu, Huimin [1 ]
Stephanopoulos, Gregory [1 ]
机构
[1] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
HIGH-THROUGHPUT SCREEN; L-TYROSINE PRODUCTION; ESCHERICHIA-COLI; TRANSCRIPTION ACTIVATION; HYALURONIC-ACID; SACCHAROMYCES-CEREVISIAE; STRAIN IMPROVEMENT; CELLULAR PHENOTYPE; INTRACELLULAR PH; TERMINAL DOMAIN;
D O I
10.1128/AEM.01888-08
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Combinatorial or random methods for strain engineering have been extensively used for the improvement of multigenic phenotypes and other traits for which the underlying mechanism is not fully understood. Although the preferred method has traditionally been mutagenesis and selection, our laboratory has successfully used mutant transcription factors, which direct the RNA polymerase (RNAP) during transcription, to engineer complex phenotypes in microbial cells. Here, we show that it is also possible to impart new phenotypes by altering the RNAP core enzyme itself, in particular through mutagenesis of the alpha subunit of the bacterial polymerase. We present the use of this tool for improving tolerance of Escherichia coli to butanol and other solvents and for increasing the titers of two commercially relevant products, L-tyrosine and hyaluronic acid. In addition, we explore the underlying physiological changes that give rise to the solvent-tolerant mutant.
引用
收藏
页码:2705 / 2711
页数:7
相关论文
共 49 条
[1]   Global transcription machinery engineering: A new approach for improving cellular phenotype [J].
Alper, Hal ;
Stephanopoulos, Gregory .
METABOLIC ENGINEERING, 2007, 9 (03) :258-267
[2]   Metabolic engineering of Escherichia coli for 1-butanol production [J].
Atsumi, Shota ;
Cann, Anthony F. ;
Connor, Michael R. ;
Shen, Claire R. ;
Smith, Kevin M. ;
Brynildsen, Mark P. ;
Chou, Katherine J. Y. ;
Hanai, Taizo ;
Liao, James C. .
METABOLIC ENGINEERING, 2008, 10 (06) :305-311
[3]   Divergence of transcription factor binding sites across related yeast species [J].
Borneman, Anthony R. ;
Gianoulis, Tara A. ;
Zhang, Zhengdong D. ;
Yu, Haiyuan ;
Rozowsky, Joel ;
Seringhaus, Michael R. ;
Wang, Lu Yong ;
Gerstein, Mark ;
Snyder, Michael .
SCIENCE, 2007, 317 (5839) :815-819
[4]   CYCLIC-AMP IN PROKARYOTES [J].
BOTSFORD, JL ;
HARMAN, JG .
MICROBIOLOGICAL REVIEWS, 1992, 56 (01) :100-122
[5]   The regulation of bacterial transcription initiation [J].
Browning, DF ;
Busby, SJW .
NATURE REVIEWS MICROBIOLOGY, 2004, 2 (01) :57-65
[6]   Evolutionary engineering of multiple-stress resistant Saccharomyces cerevisiae [J].
Çakar, ZP ;
Seker, UOS ;
Tamerler, C ;
Sonderegger, M ;
Sauer, U .
FEMS YEAST RESEARCH, 2005, 5 (6-7) :569-578
[7]   Metabolic engineering of propanediol pathways [J].
Cameron, DC ;
Altaras, NE ;
Hoffman, ML ;
Shaw, AJ .
BIOTECHNOLOGY PROGRESS, 1998, 14 (01) :116-125
[8]   Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells [J].
da Silveira, MG ;
San Romao, MV ;
Loureiro-Dias, MC ;
Rombouts, FM ;
Abee, T .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2002, 68 (12) :6087-6093
[9]   Versatility of the carboxy-terminal domain of the α subunit of RNA polymerase in transcriptional activation:: use of the DNA contact site as a protein contact site for MarA [J].
Dangi, B ;
Gronenborn, AM ;
Rosner, JL ;
Martin, RG .
MOLECULAR MICROBIOLOGY, 2004, 54 (01) :45-59
[10]  
Demain A., 1986, Manual of Industrial Microbiology and Biotechnology