Meniscus-Assisted High-Efficiency Magnetic Collection and Separation for EWOD Droplet Microfluidics

被引:38
作者
Shah, Gaurav J. [1 ]
Kim, Chang-Jin [1 ]
机构
[1] Univ Calif Los Angeles, Dept Mech & Aerosp Engn, Los Angeles, CA 90095 USA
基金
美国国家航空航天局; 美国国家卫生研究院;
关键词
Collection; droplet microfluidics; electrowetting-on-dielectric (EWOD); magnetic beads; meniscus; separation; ON-A-CHIP; ELECTROWETTING-BASED ACTUATION; DIGITAL MICROFLUIDICS; LIQUID DROPLETS; DEVICES; LAB; SYSTEMS; CELLS; TECHNOLOGY; PARTICLES;
D O I
10.1109/JMEMS.2009.2013394
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper describes a technique to increase the efficiency of magnetic concentration on an electrowetting-on-dielectric (EWOD)-based droplet (digital) microfluidic platform operated in air, i.e., on dry surface. Key differences in the force scenario for droplet microfluidics vis-A-vis the conventional continuous microfluidic systems are identified to explain the rationale behind the proposed idea. In particular, the weakness of the magnetic force relative to the bead-substrate adhesion and the liquid-air interfacial tension is highlighted, and a new technique to achieve high-efficiency magnetic collection with the assistance of the interfacial force is proposed. An improvement in collection efficiency (e.g., from similar to 73% to similar to 99%) is observed with the new technique of "meniscus-assisted magnetic bead collection". In addition, isolation of the magnetic species from a mixed sample of magnetic and nonmagnetic beads is demonstrated. Comparison with other related reports is also presented.
引用
收藏
页码:363 / 375
页数:13
相关论文
共 45 条
[1]   Microfluidic devices for cellomics: a review [J].
Andersson, H ;
van den Berg, A .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 92 (03) :315-325
[2]  
[Anonymous], Streptavidin-coupled Dynabeads - US
[3]   Intranasal vaccination with recombinant outer membrane protein CD and adamantylamide dipeptide as the mucosal adjuvant enhances pulmonary clearance of Moraxella catarrhalis in an experimental murine model [J].
Becker, Pablo D. ;
Bertot, Gustavo M. ;
Souss, David ;
Ebensen, Thomas ;
Guzman, Carlos A. ;
Grinstein, Satil .
INFECTION AND IMMUNITY, 2007, 75 (04) :1778-1784
[4]   Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits [J].
Cho, SK ;
Moon, HJ ;
Kim, CJ .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2003, 12 (01) :70-80
[5]   Concentration and binary separation of micro particles for droplet-based digital microfluidics [J].
Cho, Sung Kwon ;
Zhao, Yuejun ;
Kim, Chang-Jin CJ'' .
LAB ON A CHIP, 2007, 7 (04) :490-498
[6]   An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities [J].
Choi, JW ;
Oh, KW ;
Thomas, JH ;
Heineman, WR ;
Halsall, HB ;
Nevin, JH ;
Helmicki, AJ ;
Henderson, HT ;
Ahn, CH .
LAB ON A CHIP, 2002, 2 (01) :27-30
[7]   Micro total analysis systems. Latest advancements and trends [J].
Dittrich, Petra S. ;
Tachikawa, Kaoru ;
Manz, Andreas .
ANALYTICAL CHEMISTRY, 2006, 78 (12) :3887-3907
[8]   Digital microfluidics: is a true lab-on-a-chip possible? [J].
Fair, R. B. .
MICROFLUIDICS AND NANOFLUIDICS, 2007, 3 (03) :245-281
[9]   Chemical and biological applications of digital-microfluidic devices [J].
Fair, Richard B. ;
Khlystov, Andrey ;
Tailor, Tina D. ;
Ivanov, Vladislav ;
Evans, Randall D. ;
Griffin, Peter B. ;
Srinivasan, Vijay ;
Pamula, Vamsee K. ;
Pollack, Michael G. ;
Zhou, Jack .
IEEE DESIGN & TEST OF COMPUTERS, 2007, 24 (01) :10-24
[10]   Digital microfluidic and biotechnology. [J].
Fouillet, Y ;
Achard, JL .
COMPTES RENDUS PHYSIQUE, 2004, 5 (05) :577-588