Recent advances in peptide probe-based biosensors for detection of infectious agents

被引:64
作者
Dover, Jason E. [1 ]
Hwang, Grace M. [2 ,3 ]
Mullen, Elaine H. [3 ]
Prorok, Barton C. [4 ]
Suh, Sang-Jin [1 ]
机构
[1] Auburn Univ, Dept Biol Sci, Auburn, AL 36849 USA
[2] Mitre Corp, Bedford, MA 01730 USA
[3] Mitre Corp, Mclean, VA USA
[4] Auburn Univ, Dept Mat Engn, Auburn, AL 36849 USA
关键词
Antibody; Biosensor; Label-free; Oligopeptides; Pathogens; Phage display; SURFACE-PLASMON RESONANCE; ADDRESSABLE POTENTIOMETRIC SENSOR; BACILLUS-ANTHRACIS SPORES; REAL-TIME PCR; SINGLE-DOMAIN ANTIBODIES; ESCHERICHIA-COLI; PHAGE DISPLAY; BIOLOGICAL WARFARE; RAPID DETECTION; IMMUNOFILTRATION ASSAY;
D O I
10.1016/j.mimet.2009.04.008
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent biological terrorism threats and outbreaks of microbial pathogens clearly emphasize the need for biosensors that can quickly and accurately identify infectious agents. The majority of rapid biosensors generate detectable signals when a molecular probe in the detector interacts with an analyte of interest Analytes may be whole bacterial or fungal cells, virus particles, or specific molecules, such as chemicals or protein toxins, produced by the infectious agent. Peptides and nucleic acids are most commonly used as probes in biosensors because of their versatility in forming various tertiary structures. The interaction between the probe and the analyte can be detected by various sensor platforms, including quartz crystal microbalances, surface acoustical waves, surface plasmon resonance, amperometrics, and magnetoelastics. The field of biosensors; is constantly evolving to develop devices that have higher sensitivity and specificity, and are smaller, portable, and cost-effective. This mini review discusses recent advances in peptide-dependent rapid biosensors and their applications as well as relative advantages and disadvantages of each technology. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 112 条
[1]  
Abbas A K., 2005, Cellular and molecular immunology
[2]   Flow-through immunofiltration assay system for rapid detection of E-coli O157:H7 [J].
Abdel-Hamid, I ;
Ivnitski, D ;
Atanasov, P ;
Wilkins, E .
BIOSENSORS & BIOELECTRONICS, 1999, 14 (03) :309-316
[3]   Simplified avidin-biotin mediated antibody attachment for a surface plasmon resonance biosensor [J].
Anderson, GP ;
Merrick, EC ;
Trammell, SA ;
Chinowsky, TM ;
Shenoy, DK .
SENSOR LETTERS, 2005, 3 (02) :151-156
[4]   DIRECT ELECTROCHEMICAL DETERMINATION OF GLUCOSE-OXIDASE IN BIOLOGICAL SAMPLES [J].
AUBREELECAT, A ;
HERVAGAULT, C ;
DELACOUR, A ;
BEAUDE, P ;
BOURDILLON, C ;
REMY, MH .
ANALYTICAL BIOCHEMISTRY, 1989, 178 (02) :427-430
[5]   A novel magnetic bead bioassay platform using a microchip-based sensor for infectious disease diagnosis [J].
Aytur, Turgut ;
Foley, Jonathan ;
Anwar, Mekhail ;
Boser, Bernhard ;
Harris, Eva ;
Beatty, P. Robert .
JOURNAL OF IMMUNOLOGICAL METHODS, 2006, 314 (1-2) :21-29
[6]   Lytic phage as a specific and selective probe for detection of Staphylococcus aureus -: A surface plasmon resonance spectroscopic study [J].
Balasubramanian, Shankar ;
Sorokulova, Iryna B. ;
Vodyanoy, Vitaly J. ;
Simonian, Aleksandr L. .
BIOSENSORS & BIOELECTRONICS, 2007, 22 (06) :948-955
[7]   Magnetoelastic sensors based on soft amorphous magnetic alloys [J].
Barandiaran, JM ;
Gutierrez, J .
SENSORS AND ACTUATORS A-PHYSICAL, 1997, 59 (1-3) :38-42
[8]  
*BIAC, 2006, FLEXCH PROD INF
[9]   Detection of viral bioagents using a shear horizontal surface acoustic wave biosensor [J].
Bisoffi, M. ;
Hjelle, B. ;
Brown, D. C. ;
Branch, D. W. ;
Edwards, T. L. ;
Brozik, S. M. ;
Bondu-Hawkins, V. S. ;
Larson, R. S. .
BIOSENSORS & BIOELECTRONICS, 2008, 23 (09) :1397-1403
[10]   Amperometric determination of live Escherichia coli using antibody-coated paramagnetic beads [J].
Boyaci, IH ;
Aguilar, ZP ;
Hossain, M ;
Halsall, HB ;
Seliskar, CJ ;
Heineman, WR .
ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2005, 382 (05) :1234-1241