Semi-order fuzzy supermartingales and submartingales with continuous time

被引:2
作者
Feng, YH [1 ]
Zhu, XL [1 ]
机构
[1] Donghua Univ, Dept Math Appl, Shanghai 200051, Peoples R China
关键词
fuzzy number; fuzzy random variable; semi-order fuzzy supermartingale; Riesz decomposition; Doob-Meyer decomposition; fuzzy-valued measures;
D O I
10.1016/S0165-0114(02)00118-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A new suitable semi-order in the fuzzy number space (E-n, D), the semi-order fuzzy supermartingales and submartingales with continuous time and their characteristics are introduced. The famous Riesz decomposition and Doob-Meyer decomposition theorems in standard martingale theory are generalized to semi-order fuzzy supermartingales. The proof of Doob-Meyer decomposition is rather technical and so the theory of fuzzy-valued measures generated by increasing fuzzy processes is developed. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 15 条
[1]  
CAMPOS LM, 1989, FUZZY SETS SYSTEMS, V29, P145, DOI DOI 10.1016/0165-0114(89)90188-7
[2]   METRIC-SPACES OF FUZZY-SETS [J].
DIAMOND, P ;
KLOEDEN, P .
FUZZY SETS AND SYSTEMS, 1990, 35 (02) :241-249
[3]  
DIAZ ML, 1998, FUZZY SETS SYSTEMS, V99, P347
[4]   Decomposition theorems for fuzzy supermartingales and submartingales [J].
Feng, YH .
FUZZY SETS AND SYSTEMS, 2000, 116 (02) :225-235
[5]  
Feng YH, 2001, JOINT 9TH IFSA WORLD CONGRESS AND 20TH NAFIPS INTERNATIONAL CONFERENCE, PROCEEDINGS, VOLS. 1-5, P824, DOI 10.1109/NAFIPS.2001.944710
[6]   Convergence theorems for fuzzy random variables and fuzzy martingales [J].
Feng, YH .
FUZZY SETS AND SYSTEMS, 1999, 103 (03) :435-441
[7]   Fuzzy-valued mappings with finite variation, fuzzy-valued measures and fuzzy-valued Lebesgue-Stieltjes integrals [J].
Feng, YH .
FUZZY SETS AND SYSTEMS, 2001, 121 (02) :227-236
[8]  
He S-W., 1992, SEMIMARTINGALE THEOR
[9]   FUZZY DIFFERENTIAL-EQUATIONS [J].
KALEVA, O .
FUZZY SETS AND SYSTEMS, 1987, 24 (03) :301-317
[10]   LIMIT-THEOREMS FOR FUZZY RANDOM-VARIABLES [J].
KLEMENT, EP ;
PURI, ML ;
RALESCU, DA .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1986, 407 (1832) :171-182