General entanglement scaling laws from time evolution

被引:150
作者
Eisert, Jens
Osborne, Tobias J.
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, London SW7 2BW, England
[2] Univ London Imperial Coll Sci Technol & Med, Inst Math Sci, London SW7 2BW, England
[3] Univ London Royal Holloway & Bedford New Coll, Dept Math, Egham TW20 0EX, Surrey, England
关键词
D O I
10.1103/PhysRevLett.97.150404
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a general scaling law for the entanglement of a large class of ground states and dynamically evolving states of quantum spin chains: we show that the geometric entropy of a distinguished block saturates, and hence follows an entanglement-boundary law. These results apply to any ground state of a gapped model resulting from dynamics generated by a local Hamiltonian, as well as, dually, to states that are generated via a sudden quench of an interaction as recently studied in the case of dynamics of quantum phase transitions. We achieve these results by exploiting ideas from quantum information theory and tools provided by Lieb-Robinson bounds. We also show that there exist noncritical fermionic systems and equivalent spin chains with rapidly decaying interactions violating this entanglement-boundary law. Implications for the classical simulatability are outlined.
引用
收藏
页数:4
相关论文
共 48 条
[21]   Ground state entanglement and geometric entropy in the Kitaev model [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICS LETTERS A, 2005, 337 (1-2) :22-28
[22]   Bipartite entanglement and entropic boundary law in lattice spin systems [J].
Hamma, A ;
Ionicioiu, R ;
Zanardi, P .
PHYSICAL REVIEW A, 2005, 71 (02)
[23]   Excitation and entanglement transfer versus spectral gap [J].
Hartmann, M. J. ;
Reuter, M. E. ;
Plenio, M. B. .
NEW JOURNAL OF PHYSICS, 2006, 8
[24]   Quasiadiabatic continuation of quantum states: The stability of topological ground-state degeneracy and emergent gauge invariance [J].
Hastings, MB ;
Wen, XG .
PHYSICAL REVIEW B, 2005, 72 (04)
[25]   Spectral gap and exponential decay of correlations [J].
Hastings, MB ;
Koma, T .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2006, 265 (03) :781-804
[26]   Multiparty entanglement in graph states [J].
Hein, M ;
Eisert, J ;
Briegel, HJ .
PHYSICAL REVIEW A, 2004, 69 (06) :062311-1
[27]   Entanglement in the XY spin chain [J].
Its, AR ;
Jin, BQ ;
Korepin, VE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (13) :2975-2990
[28]   Entanglement in quantum spin chains, symmetry classes of random matrices, and conformal field theory [J].
Keating, JP ;
Mezzadri, F .
PHYSICAL REVIEW LETTERS, 2005, 94 (05)
[29]  
KOLLATH C, CONDMAT0607235
[30]  
Latorre JI, 2004, QUANTUM INF COMPUT, V4, P48