An investigation of the thermal stability and sulphur tolerance of Ag/γ-Al2O3 catalysts for the SCR of NOx with hydrocarbons and hydrogen

被引:61
作者
Breen, J. P. [1 ]
Burch, R.
Hardacre, C.
Hill, C. J.
Krutzsch, B.
Bandl-Konrad, B.
Jobson, E.
Cider, L.
Blakeman, P. G.
Peace, L. J.
Twigg, M. V.
Preis, M.
Gottschling, M.
机构
[1] Queens Univ Belfast, CenTACat, Belfast BT9 5AG, Antrim, North Ireland
[2] DaimlerChrysler AG, D-70546 Stuttgart, Germany
[3] Volvo Technol Corp AB, Dept 06130, SE-41288 Gothenburg, Sweden
[4] Johnson Matthey Catalysis & Technol, European Technol Ctr, Royston SG8 5HE, Herts, England
[5] BMW Grp Res & Technol, D-80788 Munich, Germany
[6] Volkswagen AG, D-38436 Wolfsburg, Germany
关键词
SCR-NOx; octane; toluene; silver; Ag/gamma-Al2O3; EXAFS; XRD; sulphur tolerance; ageing;
D O I
10.1016/j.apcatb.2006.05.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sulphur tolerance and thermal stability of a 2 wt% Ag/gamma-Al2O3 catalyst was investigated for the H-2-promoted SCR of NO, with octane and toluene. The aged catalyst was characterised by XRD and EXAFS analysis. It was found that the effect of ageing was a function of the gas mix and temperature of ageing. At high temperatures (800 degrees C) the catalyst deactivated regardless of the reaction mix. EXAFS analysis showed that this was associated with the Ag particles on the surface of the catalyst becoming more ordered. At 600 and 700 degrees C, the deactivating effect of ageing was much less pronounced for the catalyst in the H-2-promoted octane-SCR reaction and ageing at 600 degrees C resulted in an enhancement in activity for the reaction in the absence of H-2. For the toluene + H-2-SCR reaction the catalyst deactivated at each ageing temperature. The effect of addition of low levels of sulphur (1 ppm SO2) to the feed was very much dependent on the reaction temperature. There was little deactivation of the catalyst at low temperatures (<= 235 degrees C), severe deactivation at intermediate temperatures (305 and 400 degrees C) and activation of the catalyst at high temperatures (> 500 degrees C). The results can be explained by the activity of the catalyst for the oxidation Of SO2 to SO3 and the relative stability of silver and aluminium sulphates. The catalyst could be almost fully regenerated by a combination of heating and the presence of hydrogen in the regeneration mix. The catalyst could not be regenerated in the absence of hydrogen. (c) 2006 Published by Elsevier B.V.
引用
收藏
页码:36 / 44
页数:9
相关论文
共 31 条
[1]   Effect of SO2 on NOx reduction by ethanol over Ag/Al2O3 catalyst [J].
Abe, A ;
Aoyama, N ;
Sumiya, S ;
Kakuta, N ;
Yoshida, K .
CATALYSIS LETTERS, 1998, 51 (1-2) :5-9
[2]   On the promotion by SO2 of the SCR process over Ag/Al2O3:: influence of SO2 concentration with C3H8 versus C3H8 as reductant [J].
Angelidis, TN ;
Christoforou, S ;
Bongiovanni, A ;
Kruse, N .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 39 (03) :197-204
[3]   Promotional effect of SO2 on the selective catalytic reduction of NOx with propane/propene over Ag/γ-Al2O3 [J].
Angelidis, TN ;
Kruse, N .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2001, 34 (03) :201-212
[4]  
BINSTEAD N, 1998, EXCURV98 CCLRC DARES
[5]   Structural investigation of the promotional effect of hydrogen during the selective catalytic reduction of NOx with hydrocarbons over Ag/Al2O3 catalysts [J].
Breen, JP ;
Burch, R ;
Hardacre, C ;
Hill, CJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (11) :4805-4807
[6]   A review of the selective reduction of NOx, with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts [J].
Burch, R ;
Breen, JP ;
Meunier, FC .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2002, 39 (04) :283-303
[7]   Exceptional activity for NOx reduction at low temperatures using combinations of hydrogen and higher hydrocarbons on Ag/Al2O3 catalysts [J].
Burch, R ;
Breen, JP ;
Hill, CJ ;
Krutzsch, B ;
Konrad, B ;
Jobson, E ;
Cider, L ;
Eränen, K ;
Klingstedt, F ;
Lindfors, LE .
TOPICS IN CATALYSIS, 2004, 30-1 (1-4) :19-25
[8]   A comparison of the selective catalytic reduction of NOx over Al2O3 and sulphated Al2O3 using CH3OH and C3H8 as reductants [J].
Burch, R ;
Halpin, E ;
Sullivan, JA .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 17 (1-2) :115-129
[9]  
Burch R, 1996, APPL CATAL B-ENVIRON, V9, pL19
[10]   Mechanistic considerations for the reduction of NOx over Pt/Al2O3 and Al2O3 catalysts under lean-burn conditions [J].
Burch, R ;
Sullivan, JA ;
Watling, TC .
CATALYSIS TODAY, 1998, 42 (1-2) :13-23