Point mutation in the first transmembrane region of the β2 subunit of the γ-aminobutyric acid type a receptor alters desensitization kinetics of γ-aminobutyric acid- and anesthetic-induced channel gating

被引:15
作者
Engblom, AC
Carlson, BX
Olsen, RW
Schousboe, A
Kristiansen, U
机构
[1] Royal Danish Sch Pharm, Dept Pharmacol, DK-2100 Copenhagen, Denmark
[2] Univ Calif Los Angeles, Sch Med, Dept Mol & Med Pharmacol, Los Angeles, CA 90095 USA
关键词
D O I
10.1074/jbc.M111215200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
A conserved glycine residue in the first transmembrane (TM1) domain of the beta2 subunit has been identified to be involved with desensitization induced by gamma-aminobutyric acid (GABA) and anesthetics. Recombinant GABA(A) receptors expressed in Sf9 cells were recorded using semi-fast agonist application. Upon direct activation by GABA or anesthetics, the main effect of the TM1 point mutation on the beta2 subunit (G219F) was to slow the time constant (tau) of desensitization. At GABA concentrations eliciting maximum currents, the corresponding median tau values were 0.87 s (25-75% interval (0.76; 1.04 s)), 0.93 s (0.76; 1.23 s), and 1.36 s (1.17; 1.57 s) for alpha1beta2gamma2, alpha1(G223F)beta2gamma2, and alpha1beta2(G219F)gamma2, respectively. The tau value for the beta2-mutant receptor was significantly longer than alpha1beta2gamma2 (p<0.01) and alpha 1(G223F)beta 2 gamma 2 (p<0.05). For pentobarbital-induced currents (500 muM), the corresponding median tau values were 1.36 s (0.81; 1.41 s), 1.47 s (1.31; 2.38 s), and 2.82 s (2.21; 5.56 s) for alpha1beta2gamma2, alpha1(G223F)beta2gamma2, and alpha1beta2(G219F)gamma2, respectively. The tau value for the beta2-mutant receptor was significantly longer than that for alpha1beta2gamma2 (p<0.01). The present findings suggest that this TM1 glycine residue is critical for the rate at which desensitization occurs and that both GABA and intravenous anesthetics implement an analogous pathway for generating desensitization.
引用
收藏
页码:17438 / 17447
页数:10
相关论文
共 31 条
[1]   IDENTIFICATION OF ACETYLCHOLINE-RECEPTOR CHANNEL-LINING RESIDUES IN THE M1 SEGMENT OF THE ALPHA-SUBUNIT [J].
AKABAS, MH ;
KARLIN, A .
BIOCHEMISTRY, 1995, 34 (39) :12496-12500
[2]   Activation and block of recombinant GABAA receptors by pentobarbitone:: a single-channel study [J].
Akk, G ;
Steinbach, JH .
BRITISH JOURNAL OF PHARMACOLOGY, 2000, 130 (02) :249-258
[3]  
Amin J, 1999, MOL PHARMACOL, V55, P411
[4]   The general anesthetic propofol slows deactivation and desensitization of GABAA receptors [J].
Bai, DL ;
Pennefather, PS ;
MacDonald, JF ;
Orser, BA .
JOURNAL OF NEUROSCIENCE, 1999, 19 (24) :10635-10646
[5]   The interaction of the general anesthetic etomidate with the gamma-aminobutyric acid type A receptor is influenced by a single amino acid [J].
Belelli, D ;
Lambert, JJ ;
Peters, JA ;
Wafford, K ;
Whiting, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :11031-11036
[6]   General anaesthetic action at transmitter-gated inhibitory amino acid receptors [J].
Belelli, D ;
Pistis, M ;
Peters, JA ;
Lambert, JJ .
TRENDS IN PHARMACOLOGICAL SCIENCES, 1999, 20 (12) :496-502
[7]  
Bianchi MT, 2001, J NEUROSCI, V21, P1127
[8]   A single glycine residue at the entrance to the first membrane-spanning domain of the γ-aminobutyric acid type a receptor β2 subunit affects allosteric sensitivity to GABA and anesthetics [J].
Carlson, BX ;
Engblom, AC ;
Kristiansen, U ;
Schousboe, A ;
Olsen, RW .
MOLECULAR PHARMACOLOGY, 2000, 57 (03) :474-484
[9]   Allosteric activation mechanism of the α1β2γ2 γ-aminobutyric acid type A receptor revealed by mutation of the conserved M2 leucine [J].
Chang, YC ;
Weiss, DS .
BIOPHYSICAL JOURNAL, 1999, 77 (05) :2542-2551
[10]   CLONING OF THE GAMMA-AMINOBUTYRIC-ACID (GABA) RHO-1 CDNA - A GABA RECEPTOR SUBUNIT HIGHLY EXPRESSED IN THE RETINA [J].
CUTTING, GR ;
LU, L ;
OHARA, BF ;
KASCH, LM ;
MONTROSERAFIZADEH, C ;
DONOVAN, DM ;
SHIMADA, S ;
ANTONARAKIS, SE ;
GUGGINO, WB ;
UHL, GR ;
KAZAZIAN, HH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (07) :2673-2677