Transition from ballistic to diffusive behavior of graphene ribbons in the presence of warping and charged impurities

被引:30
作者
Klos, J. W. [1 ,2 ]
Shylau, A. A. [2 ]
Zozoulenko, I. V. [2 ]
Xu, Hengyi [3 ]
Heinzel, T. [3 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, Surface Phys Div, PL-61614 Poznan, Poland
[2] Linkoping Univ, Dept Sci & Technol, S-60174 Norrkoping, Sweden
[3] Univ Dusseldorf, Condensed Matter Phys Lab, D-40225 Dusseldorf, Germany
关键词
ballistic transport; diffusion; electrical conductivity; electron density; graphene; impurities; long-range order; sheet materials; tight-binding calculations; TRANSPORT;
D O I
10.1103/PhysRevB.80.245432
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the effects of the long-range disorder potential and warping on the conductivity and mobility of graphene ribbons using the Landauer formalism and the tight-binding p-orbital Hamiltonian. We demonstrate that as the length of the structure increases the system undergoes a transition from the ballistic to the diffusive regime. This is reflected in the calculated electron-density dependencies of the conductivity and the mobility. In particular, we show that the mobility of graphene ribbons varies as mu(n)similar to n(-lambda), with 0 <lambda less than or similar to 0.5. The exponent lambda depends on the length of the system with lambda=0.5 corresponding to short structures in the ballistic regime, whereas the diffusive regime lambda=0 (when the mobility is independent on the electron density) is reached for sufficiently long structures. Our results can be used for the interpretation of experimental data when the value of lambda can be used to distinguish the transport regime of the system (i.e., ballistic, quasiballistic, or diffusive). Based on our findings we discuss available experimental results.
引用
收藏
页数:12
相关论文
共 51 条
[1]   A self-consistent theory for graphene transport [J].
Adam, Shaffique ;
Hwang, E. H. ;
Galitski, V. M. ;
Das Sarma, S. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (47) :18392-18397
[2]   Boltzmann transport and residual conductivity in bilayer graphene [J].
Adam, Shaffique ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2008, 77 (11)
[3]   Non-Hermitian Luttinger liquids and flux line pinning in planar superconductors -: art. no. P10003 [J].
Affleck, I ;
Hofstetter, W ;
Nelson, DR ;
Shollwöck, U .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[4]   NEW METHOD FOR A SCALING THEORY OF LOCALIZATION [J].
ANDERSON, PW ;
THOULESS, DJ ;
ABRAHAMS, E ;
FISHER, DS .
PHYSICAL REVIEW B, 1980, 22 (08) :3519-3526
[5]   Screening effect and impurity scattering in monolayer graphene [J].
Ando, Tsuneya .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2006, 75 (07)
[6]  
[Anonymous], 2009, Theory of Elasticity
[7]  
[Anonymous], 2004, MOPENITORII SECURIUL
[8]   Ballistic transport in graphene nanostrips in the presence of disorder: Importance of edge effects [J].
Areshkin, Denis A. ;
Gunlycke, Daniel ;
White, Carter T. .
NANO LETTERS, 2007, 7 (01) :204-210
[9]   One-parameter scaling at the dirac point in graphene [J].
Bardarson, J. H. ;
Tworzydlo, J. ;
Brouwer, P. W. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW LETTERS, 2007, 99 (10)
[10]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355