Enhanced negative thermal expansion in MFI molecular sieves by varying framework composition

被引:15
作者
Bhange, D. S. [1 ]
Ramaswamy, Veda [2 ]
机构
[1] Natl Chem Lab, Catalysis Div, Pune 411008, Maharashtra, India
[2] Cent Leather Res Inst, Chem Phys Lab, Madras 600020, Tamil Nadu, India
关键词
Silicalite-1; HTXRD; Negative thermal expansion; NEUTRON POWDER-DIFFRACTION; ZEOLITES; SILICA; CHABAZITE; BEHAVIOR; ZSM-5; CU;
D O I
10.1016/j.micromeso.2009.11.029
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
In the present investigations we have carried out the high temperature X-ray diffraction (HTXRD) studies on the metallosilicate molecular sieves iron silicalite-1 (FeS-1) samples of different Si/M ratios (Si/Fe = 50, 75, 100 and infinity) for their negative thermal expansion (NTE) behavior. All the samples exhibit NTE behavior in the temperature range 373-773 K. Systematic increase in negative thermal expansion coefficient is observed as a function of increasing Fe content in the MFI framework. Strength of the negative thermal expansion increases in the order Si/Fe = infinity < 100 < 75 < 50. It is concluded that by changing the composition of the framework of MFI, enhanced negative thermal expansion can be obtained. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 31 条
[1]   Exceptional negative thermal expansion in AlPO4-17 [J].
Attfield, MP ;
Sleight, AW .
CHEMISTRY OF MATERIALS, 1998, 10 (07) :2013-2019
[2]   High temperature thermal expansion behavior of silicalite-1 molecular sieve: in situ HTXRD study [J].
Bhange, D. S. ;
Ramaswamy, Veda .
MICROPOROUS AND MESOPOROUS MATERIALS, 2007, 103 (1-3) :235-242
[3]   Thermal stability of the Mobil Five type metallosilicate molecular sieves - An in situ high, temperature X-ray diffraction study [J].
Bhange, D. S. ;
Ramaswamy, Veda .
MATERIALS RESEARCH BULLETIN, 2007, 42 (05) :851-860
[4]   Negative thermal expansion in silicalite-1 and zirconium silicalite-1 having MFI structure [J].
Bhange, D. S. ;
Ramaswamy, Veda .
MATERIALS RESEARCH BULLETIN, 2006, 41 (07) :1392-1402
[5]   Compositional dependence of negative thermal expansion in the Prussian blue analogues MIIPtIV(CN)6 (M = Mn, Fe, Co, Ni, Cu, Zn, Cd) [J].
Chapman, Karena W. ;
Chupas, Peter J. ;
Kepert, Cameron J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (21) :7009-7014
[6]   EXPERIMENTAL-VERIFICATION OF A PREDICTED NEGATIVE THERMAL EXPANSIVITY OF CRYSTALLINE ZEOLITES [J].
COUVES, JW ;
JONES, RH ;
PARKER, SC ;
TSCHAUFESER, P ;
CATLOW, CRA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 (27) :L329-L332
[7]   Low-temperature oxygen migration and negative thermal expansion in ZrW2-xMoxO8 [J].
Evans, JSO ;
Hanson, PA ;
Ibberson, RM ;
Duan, N ;
Kameswari, U ;
Sleight, AW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (36) :8694-8699
[8]   Negative thermal expansion in ZrW2O8 and HfW2O8 [J].
Evans, JSO ;
Mary, TA ;
Vogt, T ;
Subramanian, MA ;
Sleight, AW .
CHEMISTRY OF MATERIALS, 1996, 8 (12) :2809-2823
[9]   Negative thermal expansion in a large molybdate and tungstate family [J].
Evans, JSO ;
Mary, TA ;
Sleight, AW .
JOURNAL OF SOLID STATE CHEMISTRY, 1997, 133 (02) :580-583
[10]   Enhanced negative thermal expansion in Lu2W3O12 [J].
Forster, PM ;
Yokochi, A ;
Sleight, AW .
JOURNAL OF SOLID STATE CHEMISTRY, 1998, 140 (01) :157-158