Preparation of electrospun nanofibers of carbon nanotube/polycaprolactone nanocomposite

被引:156
作者
Saeed, Khalid
Park, Soo-Young
Lee, Hwa-Jeong
Baek, Jong-Beom
Huh, Wan-Soo
机构
[1] Kyungpook Natl Univ, Dept Polymer Sci, Taegu 702701, South Korea
[2] Chungbuk Natl Univ, Sch Chem Engn, Cheongju 361763, Chungbuk, South Korea
[3] Soongsil Univ, Dept Chem & Environm Engn, Seoul 156743, South Korea
关键词
in situ polymerization; MWNT; nanofibers;
D O I
10.1016/j.polymer.2006.09.012
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Multiwalled carbon nanotube/polycaprolactone nanocomposites (MWNT/PCL) were prepared by in situ polymerization, whereby functionalized MWNTs (F-MWNTs) and unfunctionalized. MWNTs (P-MWNTs) were used as reinforcing materials. The F-MWNTs were functionalized by Friedel-Crafts acylation, which introduced the aromatic amine (COC6H4-NH2) groups on the side wall. The F-MWNTs were chemically bonded with the PCL chains in the F-MWNT/PCL, as indicated by the appearance of the amide 11 group in the FT-IR spectrum. The TGA thermograms showed that the F-MWNT/PCL had better thermal stability than PCL and P-MWNT/PCL. The PCL and the nanocomposite nanofibers were prepared by an electrospinning technique. The nanocomposites that contain more than 2 wt% of MWNTs were not able to be electrospun. The bead of the F-MWNT/PCL nanofiber was formed less than that of the P-MWNT/PCL. The nanocomposite nanofibers showed a relatively broader diameter than the pure PCL nanofibers. The MWNTs were embedded within the nanofibers and were well oriented along the axes of the electrospun nanofibers. as confirmed by transmission electron microscopy. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:8019 / 8025
页数:7
相关论文
共 46 条
[1]   Mechanical and electrical properties of a MWNT/epoxy composite [J].
Allaoui, A ;
Bai, S ;
Cheng, HM ;
Bai, JB .
COMPOSITES SCIENCE AND TECHNOLOGY, 2002, 62 (15) :1993-1998
[2]   Improved syntheses of poly(oxy-1,3-phenylenecarbonyl-1,4-phenylene) and related poly(ether-ketones) using polyphosphoric acid/P2O5 as polymerization medium [J].
Baek, JB ;
Tan, LS .
POLYMER, 2003, 44 (15) :4135-4147
[3]   Unusual thermal relaxation of viscosity-and-shear-induced strain in poly(ether-ketones) synthesized in highly viscous polyphosphoric acid/P2O5 medium [J].
Baek, JB ;
Park, SY ;
Price, GE ;
Lyons, CB ;
Tan, LS .
POLYMER, 2005, 46 (05) :1543-1552
[4]   Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode [J].
Bahr, JL ;
Yang, JP ;
Kosynkin, DV ;
Bronikowski, MJ ;
Smalley, RE ;
Tour, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (27) :6536-6542
[5]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[6]   Preparation of fibers with nanoscaled morphologies: Electrospinning of polymer blends [J].
Bognitzki, M ;
Frese, T ;
Steinhart, M ;
Greiner, A ;
Wendorff, JH ;
Schaper, A ;
Hellwig, M .
POLYMER ENGINEERING AND SCIENCE, 2001, 41 (06) :982-989
[7]   Processing and microstructural characterization of porous biocompatible protein polymer thin films [J].
Buchko, CJ ;
Chen, LC ;
Shen, Y ;
Martin, DC .
POLYMER, 1999, 40 (26) :7397-7407
[8]   Electrospun nonwovens of shape-memory polyurethane block copolymers [J].
Cha, DI ;
Kim, HY ;
Lee, KH ;
Jung, YC ;
Cho, JW ;
Chun, BC .
JOURNAL OF APPLIED POLYMER SCIENCE, 2005, 96 (02) :460-465
[9]   Electrospinning with dual collection rings [J].
Dalton, PD ;
Klee, D ;
Möller, M .
POLYMER, 2005, 46 (03) :611-614
[10]   Electrospinning of polyurethane fibers [J].
Demir, MM ;
Yilgor, I ;
Yilgor, E ;
Erman, B .
POLYMER, 2002, 43 (11) :3303-3309