Synthesis of cysteinyl-tRNACys by a genome that lacks the normal cysteine-tRNA synthetase

被引:43
作者
Lipman, RSA
Sowers, KR
Hou, YM
机构
[1] Thomas Jefferson Univ, Dept Biochem & Mol Pharmacol, Philadelphia, PA 19107 USA
[2] Univ Maryland, Ctr Marine Biotechnol, Biotechnol Inst, Columbus Ctr, Baltimore, MD 21202 USA
关键词
D O I
10.1021/bi0004955
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Synthesis of cysteinyl-tRNA(Cys) by cysteine-tRNA synthetase is required for decoding cysteine codons in all known organisms. The genome of the archaeon Methanococcus jannaschii lacks the gene for a normal cysteine-tRNA synthetase. The activity of the enzyme, however, was identified recently, and it allowed the purification of the enzyme and cloning of its gene. Sequence analysis of the gene showed that it encodes proline-tRNA synthetase and, thus, raised the possibility of dual activities in a single aminoacyl-tRNA synthetase. Assays of aminoacyl-adenylate synthesis confirmed the ability of the enzyme to activate proline and cysteine and showed that both activities were independent of tRNA. Assays of tRNA aminoacylation established the specific attachment of proline to tRNA(Pro) and cysteine to tRNA(Cys). However, in contrast to a recent report of comparable activities with cysteine and proline, results here indicate that the adenylate synthesis and aminoacylation activities with cysteine are significantly lower than the respective activity with proline. In addition, there is evidence of overlapping amino acid-binding sites and tRNA-binding sites. These considerations, among others, raised the distinct possibility that the M. jannaschii proline-tRNA synthetase may recruit additional protein or RNA factors to facilitate the synthesis of cysteinyl-tRNA(Cys).
引用
收藏
页码:7792 / 7798
页数:7
相关论文
共 38 条
  • [1] Structural and functional considerations of the aminoacylation reaction
    Arnez, JG
    Moras, D
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 1997, 22 (06) : 211 - 216
  • [2] Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii
    Bult, CJ
    White, O
    Olsen, GJ
    Zhou, LX
    Fleischmann, RD
    Sutton, GG
    Blake, JA
    FitzGerald, LM
    Clayton, RA
    Gocayne, JD
    Kerlavage, AR
    Dougherty, BA
    Tomb, JF
    Adams, MD
    Reich, CI
    Overbeek, R
    Kirkness, EF
    Weinstock, KG
    Merrick, JM
    Glodek, A
    Scott, JL
    Geoghagen, NSM
    Weidman, JF
    Fuhrmann, JL
    Nguyen, D
    Utterback, TR
    Kelley, JM
    Peterson, JD
    Sadow, PW
    Hanna, MC
    Cotton, MD
    Roberts, KM
    Hurst, MA
    Kaine, BP
    Borodovsky, M
    Klenk, HP
    Fraser, CM
    Smith, HO
    Woese, CR
    Venter, JC
    [J]. SCIENCE, 1996, 273 (5278) : 1058 - 1073
  • [3] A COMPONENT OF THE MULTISYNTHETASE COMPLEX IS A MULTIFUNCTIONAL AMINOACYL-TRANSFER RNA-SYNTHETASE
    CERINI, C
    KERJAN, P
    ASTIER, M
    GRATECOS, D
    MIRANDE, M
    SEMERIVA, M
    [J]. EMBO JOURNAL, 1991, 10 (13) : 4267 - 4277
  • [4] ON THE RATE LAW AND MECHANISM OF ADENOSINE TRIPHOSPHATE-PYROSPHOSPHATE ISOTOPE EXCHANGE REACTION OF AMINO ACYL TRANSFER RIBONUCLEIC ACID SYNTHETASES
    COLE, FX
    SCHIMMEL, PR
    [J]. BIOCHEMISTRY, 1970, 9 (03) : 480 - +
  • [5] Glutamyl-tRNAGln amidotransferase in Deinococcus radiodurans may be confined to asparagine biosynthesis
    Curnow, AW
    Tumbula, DL
    Pelaschier, JT
    Min, B
    Söll, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (22) : 12838 - 12843
  • [6] Glu-tRNA(Gln) amidotransferase: A novel heterotrimeric enzyme required for correct decoding of glutamine codons during translation
    Curnow, AW
    Hong, KW
    Yuan, R
    Kim, SI
    Martins, O
    Winkler, W
    Henkin, TM
    Soll, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (22) : 11819 - 11826
  • [7] A 2ND CLASS OF SYNTHETASE STRUCTURE REVEALED BY X-RAY-ANALYSIS OF ESCHERICHIA-COLI SERYL-TRANSFER RNA-SYNTHETASE AT 2.5-A
    CUSACK, S
    BERTHETCOLOMINAS, C
    HARTLEIN, M
    NASSAR, N
    LEBERMAN, R
    [J]. NATURE, 1990, 347 (6290) : 249 - 255
  • [8] PARTITION OF TRANSFER-RNA SYNTHETASES INTO 2 CLASSES BASED ON MUTUALLY EXCLUSIVE SETS OF SEQUENCE MOTIFS
    ERIANI, G
    DELARUE, M
    POCH, O
    GANGLOFF, J
    MORAS, D
    [J]. NATURE, 1990, 347 (6289) : 203 - 206
  • [9] CYSTEINYL-TRANSFER RNA-SYNTHETASE - DETERMINATION OF THE LAST ESCHERICHIA-COLI AMINOACYL-TRANSFER RNA-SYNTHETASE PRIMARY STRUCTURE
    ERIANI, G
    DIRHEIMER, G
    GANGLOFF, J
    [J]. NUCLEIC ACIDS RESEARCH, 1991, 19 (02) : 265 - 269
  • [10] Catalytic defects in mutants of class II histidyl-tRNA synthetase from Salmonella typhimurium previously linked to decreased control of histidine biosynthesis regulation
    Francklyn, C
    Adams, J
    Augustine, J
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (05) : 847 - 858