Nanofabrication, offering unprecedented capabilities in the manipulation of material structures and properties, opens up new opportunities for engineering innovative magnetic materials and devices, developing ultra-high-density magnetic storage, and understanding micromagnetics. This paper reviews the recent advances in patterned magnetic nanostructures, a fast-emerging field, including 1) state-of-the-art technology for patterning of magnetic nanostructures as small as 10 nm; 2) engineering of unique magnetic properties (such as domain structures, domain switching, and magnetoresistance) by patterning and controlling the size, shape, spacing, orientation, and compositions of magnetic materials; 3) quantized magnetic disks-a new paradigm for ultra-high-density magnetic storage based on patterned single-domain elements that have demonstrated a storage density of 65 Gb/in(2) (nearly two orders of magnitude higher than that in current commercial magnetic disks) and a capability of 400 Gb/in(2); 4) novel magnetoresistance sensors based on unique properties of magnetic nanostructures; 5) other applications of nanoscale patterning in magnetics such as the quantification of magnetic force microscopy (MFM), and a new ultra-high-resolution MFM tip; and 6) sub-10-nm imprint lithography-a new low-cost, high-throughput technology for manufacturing magnetic nanostructures.