Gap Junction Mediated Intercellular Metabolite Transfer in the Cochlea Is Compromised in Connexin30 Null Mice

被引:84
作者
Chang, Qing [1 ]
Tang, Wenxue [1 ]
Ahmad, Shoeb [1 ]
Zhou, Binfei [1 ]
Lin, Xi [1 ,2 ]
机构
[1] Emory Univ, Sch Med, Dept Otolaryngol, Atlanta, GA 30322 USA
[2] Emory Univ, Sch Med, Dept Cell Biol, Atlanta, GA 30322 USA
来源
PLOS ONE | 2008年 / 3卷 / 12期
关键词
D O I
10.1371/journal.pone.0004088
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Connexin26 (Cx26) and connexin30 (Cx30) are two major protein subunits that co-assemble to form gap junctions (GJs) in the cochlea. Mutations in either one of them are the major cause of non-syndromic prelingual deafness in humans. Because the mechanisms of cochlear pathogenesis caused by Cx mutations are unclear, we investigated effects of Cx30 null mutation on GJ-mediated ionic and metabolic coupling in the cochlea of mice. A novel flattened cochlear preparation was used to directly assess intercellular coupling in the sensory epithelium of the cochlea. Double-electrode patch clamp recordings revealed that the absence of Cx30 did not significantly change GJ conductance among the cochlear supporting cells. The preserved electrical coupling is consistent with immunolabeling data showing extensive Cx26 GJs in the cochlea of the mutant mice. In contrast, dye diffusion assays showed that the rate and extent of intercellular transfer of multiple fluorescent dyes (including a non-metabolizable D-glucose analogue, 2-NBDG) among cochlear supporting cells were severely reduced in Cx30 null mice. Since the sensory epithelium in the cochlea is an avascular organ, GJ-facilitated intercellular transfer of nutrient and signaling molecules may play essential roles in cellular homeostasis. To test this possibility, NBDG was used as a tracer to study the contribution of GJs in transporting glucose into the cochlear sensory epithelium when delivered systemically. NBDG uptake in cochlear supporting cells was significantly reduced in Cx30 null mice. The decrease was also observed with GJ blockers or glucose competition, supporting the specificity of our tests. These data indicate that GJs facilitate efficient uptake of glucose in the supporting cells. This study provides the first direct experimental evidence showing that the transfer of metabolically-important molecules in cochlear supporting cells is dependent on the normal function of GJs, thereby suggesting a novel pathogenesis process in the cochlea for Cx-mutation-linked deafness.
引用
收藏
页数:10
相关论文
共 38 条
[11]   Compartmentalized and signal-selective gap junctional coupling in the hearing cochlea [J].
Jagger, DJ ;
Forge, A .
JOURNAL OF NEUROSCIENCE, 2006, 26 (04) :1260-1268
[12]   Nitric oxide specifically reduces the permeability of Cx37-containing gap junctions to small molecules [J].
Kameritsch, P ;
Khandoga, N ;
Nagel, W ;
Hundhausen, C ;
Lidington, D ;
Pohl, U .
JOURNAL OF CELLULAR PHYSIOLOGY, 2005, 203 (01) :233-242
[13]   Connexin 26 mutations in hereditary non-syndromic sensorineural deafness [J].
Kelsell, DP ;
Dunlop, J ;
Stevens, HP ;
Lench, NJ ;
Liang, JN ;
Parry, G ;
Mueller, RF ;
Leigh, IM .
NATURE, 1997, 387 (6628) :80-83
[14]   GAP-JUNCTIONS IN THE RAT COCHLEA - IMMUNOHISTOCHEMICAL AND ULTRASTRUCTURAL ANALYSIS [J].
KIKUCHI, T ;
KIMURA, RS ;
PAUL, DL ;
ADAMS, JC .
ANATOMY AND EMBRYOLOGY, 1995, 191 (02) :101-118
[15]   Gap junction systems in the mammalian cochlea [J].
Kikuchi, T ;
Kimura, RS ;
Paul, DL ;
Takasaka, T ;
Adams, JC .
BRAIN RESEARCH REVIEWS, 2000, 32 (01) :163-166
[16]   Evidence for redox regulation of cytochrome c release during programmed neuronal death: Antioxidant effects of protein synthesis and caspase inhibition [J].
Kirkland, RA ;
Franklin, JL .
JOURNAL OF NEUROSCIENCE, 2001, 21 (06) :1949-1963
[17]   ION-TRANSPORT IN GUINEA-PIG COCHLEA .1. POTASSIUM AND SODIUM-TRANSPORT [J].
KONISHI, T ;
HAMRICK, PE ;
WALSH, PJ .
ACTA OTO-LARYNGOLOGICA, 1978, 86 (1-2) :22-34
[18]   Dominant cataracts result from incongruous mixing of wild-type lens connexins [J].
Martinez-Wittinghan, FJ ;
Sellitto, C ;
Li, LP ;
Gong, XH ;
Brink, PR ;
Mathias, RT ;
White, TW .
JOURNAL OF CELL BIOLOGY, 2003, 161 (05) :969-978
[19]   Gap junctions mediate glucose transport between GLUT1-positive and -negative cells in the spiral limbus of the rat cochlea [J].
Matsunami, T ;
Suzuki, T ;
Hisa, Y ;
Takata, K ;
Takamatsu, T ;
Oyamada, M .
CELL COMMUNICATION AND ADHESION, 2006, 13 (1-2) :93-102
[20]   Glucose transport and apoptosis [J].
Moley, KH ;
Mueckler, MM .
APOPTOSIS, 2000, 5 (02) :99-105