Putting order in risk measures

被引:435
作者
Frittelli, M [1 ]
Gianin, ER
机构
[1] Univ Florence, Florence, Italy
[2] Univ Milan, Milan, Italy
关键词
risk measures; coherent risk measures; convex risk measures; incomplete markets; convex duality;
D O I
10.1016/S0378-4266(02)00270-4
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper introduces a set of axioms that define convex risk measures. Duality theory provides the representation theorem for these measures and the link with pricing rules. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:1473 / 1486
页数:14
相关论文
共 20 条
[1]   Coherent measures of risk [J].
Artzner, P ;
Delbaen, F ;
Eber, JM ;
Heath, D .
MATHEMATICAL FINANCE, 1999, 9 (03) :203-228
[2]  
Artzner P., 1997, Journal of Risk, V10, P68
[3]  
Artzner Phillipe, 1999, N AM ACTUARIAL J, V3, P11, DOI DOI 10.1080/10920277.1999.10595795
[4]  
BELLINI F, 2002, MATH FINANCE, V121
[5]   Pricing and hedging in incomplete markets [J].
Carr, P ;
Geman, H ;
Madan, DB .
JOURNAL OF FINANCIAL ECONOMICS, 2001, 62 (01) :131-167
[6]  
CVITANIC J, 1998, DYNAMIC MEASURES RIS
[7]   CONVEX GAMES AND EXTREME POINTS [J].
DELBAEN, F .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1974, 45 (01) :210-233
[8]  
DELBAEN F, 2000, EXPONENTIAL HEDGING
[9]  
Delbaen Freddy, 2000, COHERENT RISK MEASUR, V24, P733
[10]  
Duffie D., 1997, J DERIV, V4, P7, DOI [DOI 10.3905/JOD.1997.407971, 10.3905/jod.1997.407971]