Putting order in risk measures

被引:435
作者
Frittelli, M [1 ]
Gianin, ER
机构
[1] Univ Florence, Florence, Italy
[2] Univ Milan, Milan, Italy
关键词
risk measures; coherent risk measures; convex risk measures; incomplete markets; convex duality;
D O I
10.1016/S0378-4266(02)00270-4
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
This paper introduces a set of axioms that define convex risk measures. Duality theory provides the representation theorem for these measures and the link with pricing rules. (C) 2002 Published by Elsevier Science B.V.
引用
收藏
页码:1473 / 1486
页数:14
相关论文
共 20 条
[11]  
FOLLMER H, 2001, CONVEX MEASURES RISK
[12]  
FREY R, 2001, VAR EXPECTED SHORTFA
[13]  
FRITTELLI M, 2000, 10 U MIL BIC
[14]  
Frittelli M., 2000, Finance Stoch, V4, P275, DOI DOI 10.1007/S007800050074
[15]  
HEATH D, 2000, 1 WORLD C BACH SOC P
[16]   Risk measures and insurance premium principles [J].
Landsman, Z ;
Sherris, M .
INSURANCE MATHEMATICS & ECONOMICS, 2001, 29 (01) :103-115
[17]  
Rockafellar R. T., 1974, Regional Conference Series in Applied Math, V16
[18]   CORES OF EXACT GAMES .1. [J].
SCHMEIDLER, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (01) :214-+
[19]   Axiomatic characterization of insurance prices [J].
Wang, SS ;
Young, VR ;
Panjer, HH .
INSURANCE MATHEMATICS & ECONOMICS, 1997, 21 (02) :173-183
[20]  
Wang T, 1999, CLASS DYNAMIC RISK M