Compressed ion temperature gradient turbulence in diverted tokamak edge

被引:85
作者
Chang, C. S. [1 ,2 ]
Ku, S. [1 ]
Diamond, P. H. [3 ,4 ]
Lin, Z. [5 ]
Parker, S. [6 ]
Hahm, T. S. [7 ]
Samatova, N. [8 ,9 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] Korea Adv Inst Sci & Technol, Dept Phys, Taejon 305701, South Korea
[3] Univ Calif San Diego, Ctr Astrophys & Space Sci, La Jolla, CA 92093 USA
[4] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[5] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[6] Univ Colorado, Boulder, CO 80309 USA
[7] Princeton Plasma Phys Lab, Princeton, NJ 08543 USA
[8] N Carolina State Univ, Raleigh, NC 27695 USA
[9] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
关键词
plasma boundary layers; plasma density; plasma instability; plasma simulation; plasma toroidal confinement; plasma transport processes; plasma turbulence; Tokamak devices; GYROKINETIC PARTICLE SIMULATION; POLOIDAL ELECTRIC-FIELD; NEOCLASSICAL TRANSPORT; ZONAL FLOWS; PLASMA; GEOMETRY; ROTATION;
D O I
10.1063/1.3099329
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
It is found from a heat-flux-driven full-f gyrokinetic particle simulation that there is ion temperature gradient (ITG) turbulence across an entire L-mode-like edge density pedestal in a diverted tokamak plasma in which the ion temperature gradient is mild without a pedestal structure, hence the normalized ion temperature gradient parameter eta(i)=(d log T-i/dr)/(d log n/dr) varies strongly from high (>4 at density pedestal top/shoulder) to low (< 2 in the density slope) values. Variation of density and eta(i) is in the same scale as the turbulence correlation length, compressing the turbulence in the density slope region. The resulting ion thermal flux is on the order of experimentally inferred values. The present study strongly suggests that a localized estimate of the ITG-driven chi(i) will not be valid due to the nonlocal dynamics of the compressed turbulence in an L-mode-type density slope. While the thermal transport and the temperature profile saturate quickly, the ExB rotation shows a longer time damping during the turbulence. In addition, a radially in-out mean potential variation is observed.
引用
收藏
页数:11
相关论文
共 38 条
[1]   On the definition of a kinetic equilibrium in global gyrokinetic simulations [J].
Angelino, P. ;
Bottino, A. ;
Hatzky, R. ;
Jolliet, S. ;
Sauter, O. ;
Tran, T. M. ;
Villard, L. .
PHYSICS OF PLASMAS, 2006, 13 (05)
[2]   Overview of ITER-FEAT - The future international burning plasma experiment [J].
Aymar, R ;
Chuyanov, VA ;
Huguet, T ;
Shimomura, Y .
NUCLEAR FUSION, 2001, 41 (10) :1301-1310
[3]   TOROIDAL ION-PRESSURE-GRADIENT-DRIVEN DRIFT INSTABILITIES AND TRANSPORT REVISITED [J].
BIGLARI, H ;
DIAMOND, PH ;
ROSENBLUTH, MN .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1989, 1 (01) :109-118
[4]   INFLUENCE OF SHEARED POLOIDAL ROTATION ON EDGE TURBULENCE [J].
BIGLARI, H ;
DIAMOND, PH ;
TERRY, PW .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (01) :1-4
[5]   Particle simulation of neoclassical transport in the plasma edge [J].
Chang, C. S. ;
Ku, S. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2006, 46 (7-9) :496-503
[6]   Spontaneous rotation sources in a quiescent tokamak edge plasma [J].
Chang, C. S. ;
Ku, S. .
PHYSICS OF PLASMAS, 2008, 15 (06)
[7]   Numerical study of neoclassical plasma pedestal in a tokamak geometry [J].
Chang, CS ;
Ku, S ;
Weitzner, H .
PHYSICS OF PLASMAS, 2004, 11 (05) :2649-2667
[8]   ENHANCEMENT OF NEOCLASSICAL TRANSPORT-COEFFICIENTS BY A POLOIDAL ELECTRIC-FIELD IN TOKAMAKS [J].
CHANG, CS .
PHYSICS OF FLUIDS, 1983, 26 (08) :2140-2149
[9]   GENERATION OF POLOIDAL ELECTRIC-FIELD IN A NEUTRAL-BEAM HEATED TOKAMAK [J].
CHANG, CS ;
HARVEY, RW .
NUCLEAR FUSION, 1983, 23 (07) :935-939
[10]   IMPURITY TRANSPORT IN THE COLLISIONAL REGIME FOR LARGE POLOIDAL VARIATIONS [J].
CHANG, CS ;
HAZELTINE, RD .
NUCLEAR FUSION, 1980, 20 (11) :1397-1405