Ordered mesoporous silica with large cage-like pores: Structural identification and pore connectivity design by controlling the synthesis temperature and time

被引:335
作者
Matos, JR
Kruk, M
Mercuri, LP
Jaroniec, M [1 ]
Zhao, L
Kamiyama, T
Terasaki, O
Pinnavaia, TJ
Liu, Y
机构
[1] Tohoku Univ, Dept Chem, Sendai, Miyagi 9808578, Japan
[2] Tohoku Univ, Dept Phys, Sendai, Miyagi 9808578, Japan
[3] Tohoku Univ, Inst Mat Res, Sendai, Miyagi 9808577, Japan
[4] Michigan State Univ, Ctr Fundamental Mat Res, E Lansing, MI 48824 USA
[5] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
关键词
D O I
10.1021/ja0283347
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
FDU-1 silicas with large cage-like pores (diameter about 10 nm) were synthesized under acidic conditions from tetraethyl orthosilicate in the presence of a poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer template B50-6600 (EO39B47EO39). High-resolution transmission electron microscopy and small-angle X-ray scattering provided strong evidence that FDU-1 silica synthesized under typical conditions is a face-centered cubic Fm3m structure with 3-dimensional hexagonal intergrowth and is not a body-centered cubic Im3m structure, as originally reported. Samples synthesized in a wide range of conditions (initial temperatures from 298 to 353 K; hydrothermal treatment at 333-393 K) exhibited similar XRD patterns and their nitrogen adsorption isotherms indicated a good-quality cage-like pore structure. The examination of low-pressure nitrogen adsorption isotherms for FDU-1 samples, whose pore entrance diameters were evaluated using an independent method, allowed us to conclude that low-pressure adsorption was appreciably stronger for samples with smaller pore entrance sizes. This prompted us to examine low-pressure adsorption isotherms for a wide range of samples and led us to a conclusion that the FDU-1 pore entrance size can be systematically enlarged from about 1.3 nm (perhaps even lower) to at least 2.4 nm without an appreciable loss of uniformity by increasing the temperature of the hydrothermal treatment or the initial synthesis. Further enlargement of pore entrance size was achieved for sufficiently long hydrothermal treatment times at temperatures of 373 K or higher, as seen from the shape of nitrogen desorption isotherms. This allowed us to obtain samples with uniform pore sizes, high adsorption capacity, and with pore entrances enlarged so much that their size was similar to the size of the pore itself, resulting in a highly open porous structure. However, in the latter case, there was evidence that the pore entrance size distribution was quite broad.
引用
收藏
页码:821 / 829
页数:9
相关论文
共 86 条
[1]   LIQUID-CRYSTALLINE PHASES AS TEMPLATES FOR THE SYNTHESIS OF MESOPOROUS SILICA [J].
ATTARD, GS ;
GLYDE, JC ;
GOLTNER, CG .
NATURE, 1995, 378 (6555) :366-368
[2]   TEMPLATING OF MESOPOROUS MOLECULAR-SIEVES BY NONIONIC POLYETHYLENE OXIDE SURFACTANTS [J].
BAGSHAW, SA ;
PROUZET, E ;
PINNAVAIA, TJ .
SCIENCE, 1995, 269 (5228) :1242-1244
[3]   TEMPERATURE-DEPENDENCE OF GAS-ADSORPTION ON A MESOPOROUS SOLID - CAPILLARY CRITICALITY AND HYSTERESIS [J].
BALL, PC ;
EVANS, R .
LANGMUIR, 1989, 5 (03) :714-723
[4]   THE DETERMINATION OF PORE VOLUME AND AREA DISTRIBUTIONS IN POROUS SUBSTANCES .1. COMPUTATIONS FROM NITROGEN ISOTHERMS [J].
BARRETT, EP ;
JOYNER, LG ;
HALENDA, PP .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1951, 73 (01) :373-380
[5]   A NEW FAMILY OF MESOPOROUS MOLECULAR-SIEVES PREPARED WITH LIQUID-CRYSTAL TEMPLATES [J].
BECK, JS ;
VARTULI, JC ;
ROTH, WJ ;
LEONOWICZ, ME ;
KRESGE, CT ;
SCHMITT, KD ;
CHU, CTW ;
OLSON, DH ;
SHEPPARD, EW ;
MCCULLEN, SB ;
HIGGINS, JB ;
SCHLENKER, JL .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1992, 114 (27) :10834-10843
[6]   3D quantum dot lattice inside mesoporous silica films [J].
Besson, S ;
Gacoin, T ;
Ricolleau, C ;
Jacquiod, C ;
Boilot, JP .
NANO LETTERS, 2002, 2 (04) :409-414
[7]   The formation of cubic Pm(3)over-barn mesostructure by an epitaxial phase transformation from hexagonal p6mm mesophase [J].
Che, SN ;
Kamiya, S ;
Terasaki, O ;
Tatsumi, T .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (48) :12089-12090
[8]   STUDIES ON MESOPOROUS MATERIALS .1. SYNTHESIS AND CHARACTERIZATION OF MCM-41 [J].
CHEN, CY ;
LI, HX ;
DAVIS, ME .
MICROPOROUS MATERIALS, 1993, 2 (01) :17-26
[9]   MODELING FLUID BEHAVIOR IN WELL-CHARACTERIZED POROUS MATERIALS [J].
CRACKNELL, RF ;
GUBBINS, KE ;
MADDOX, M ;
NICHOLSON, D .
ACCOUNTS OF CHEMICAL RESEARCH, 1995, 28 (07) :281-288
[10]   Mo-containing SBA-1 mesoporous molecular sieves as catalysts for partial oxidation of methane [J].
Dai, LX ;
Teng, YH ;
Tabata, K ;
Suzuki, E ;
Tatsumi, T .
CHEMISTRY LETTERS, 2000, (07) :794-795