Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes

被引:38
作者
Landi, Brian J.
Evans, Chris M.
Worman, James J.
Castro, Stephanie L.
Bailey, Sheila G.
Raffaelle, Ryne P. [1 ]
机构
[1] Rochester Inst Technol, NanoPower Res Labs, Rochester, NY 14623 USA
[2] Ohio Aerosp Inst, Cleveland, OH 44142 USA
[3] NASA, Glenn Res Ctr, Cleveland, OH 44135 USA
基金
美国国家航空航天局; 美国国家科学基金会;
关键词
carbon nanotube; quantum dot; nanomaterials; solar energy materials;
D O I
10.1016/j.matlet.2006.03.057
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Noncovalent attachment of Use quantum dots (QDs) to single wall carbon nanotubes (SWNTs) through an intermediary I-pyrenebutyric acid N-hydroxy-succinimide ester (PBASE) molecule has been performed. The ligand exchange process from trioctylphosphine oxide (TOPO)-capped CdSe to the 4-aminothiophenol (ATP) ligand is supported by solvent solubility, NMR spectroscopy, and IR spectroscopy, with an estimated molecular efficiency > 50:1. Noncovalent coupling of the PBASE molecule causes a redshift in the SWNT interband electronic transitions, consistent with a pi-pi interaction that promotes electron delocalization. TEM analysis after chemical coupling of the CdSe-ATP QDs to the PBASE-SWNTs shows an abundant coverage of QDs along the SWNT bundles. Raman spectra (1.96 eV excitation) of PBASE-SWNTs and the noncovalent product demonstrate that each of the major Raman modes (RBM, D-, G-, or G'-bands) is unaltered by the noncovalent interaction with PBASE or attachment of CdSe QDs, indicating that the structural integrity of the SWNTs is maintained. However, upshifts in the Raman modes are observed, the largest being for the G-band, indicating charge transfer between the SWNTs and attached CdSe QDs. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:3502 / 3506
页数:5
相关论文
共 27 条
[1]   Covalent chemistry of single-wall carbon nanotubes [J].
Bahr, JL ;
Tour, JM .
JOURNAL OF MATERIALS CHEMISTRY, 2002, 12 (07) :1952-1958
[2]   Covalent surface chemistry of single-walled carbon nanotubes [J].
Banerjee, S ;
Hemraj-Benny, T ;
Wong, SS .
ADVANCED MATERIALS, 2005, 17 (01) :17-29
[3]   Synthesis and characterization of carbon nanotube-nanocrystal heterostructures [J].
Banerjee, S ;
Wong, SS .
NANO LETTERS, 2002, 2 (03) :195-200
[4]   In situ quantum dot growth on multiwalled carbon nanotubes [J].
Banerjee, S ;
Wong, SS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (34) :10342-10350
[5]   Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization [J].
Chen, RJ ;
Zhang, YG ;
Wang, DW ;
Dai, HJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) :3838-3839
[6]   Covalent functionalization of single-walled carbon nanotubes for materials applications [J].
Dyke, CA ;
Tour, JM .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (51) :11151-11159
[7]   Optical transition energies for carbon nanotubes from resonant Raman spectroscopy: Environment and temperature effects [J].
Fantini, C ;
Jorio, A ;
Souza, M ;
Strano, MS ;
Dresselhaus, MS ;
Pimenta, MA .
PHYSICAL REVIEW LETTERS, 2004, 93 (14) :147406-1
[8]   Attachment of magnetic nanoparticles on carbon nanotubes and their soluble derivatives [J].
Georgakilas, V ;
Tzitzios, V ;
Gournis, D ;
Petridis, D .
CHEMISTRY OF MATERIALS, 2005, 17 (07) :1613-1617
[9]   Integrating single-wall carbon nanotubes into donor-acceptor nanohybrids [J].
Guldi, DM ;
Rahman, GMA ;
Jux, N ;
Tagmatarchis, N ;
Prato, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (41) :5526-5530
[10]  
Han SP, 2003, MATER RES SOC SYMP P, V772, P173