Weak converse Lyapunov theorems and control-Lyapunov functions

被引:43
作者
Kellett, CM [1 ]
Teel, AR [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
关键词
converse Lyapunov theorem; weak set stability; differential inclusions; control-Lyapunov function; asymptotic controllability;
D O I
10.1137/S0363012901398186
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a weakly uniformly globally asymptotically stable closed (not necessarily compact) set A for a differential inclusion that is defined on R-n, is locally Lipschitz on R-n\A, and satisfies other basic conditions, we construct a weak Lyapunov function that is locally Lipschitz on R-n. Using this result, we show that uniform global asymptotic controllability to a closed (not necessarily compact) set for a locally Lipschitz nonlinear control system implies the existence of a locally Lipschitz control-Lyapunov function, and from this control-Lyapunov function we construct a feedback that is robust to measurement noise.
引用
收藏
页码:1934 / 1959
页数:26
相关论文
共 31 条
[1]   Continuous control-Lyapunov functions for asymptotically controllable time-varying systems [J].
Albertini, F ;
Sontag, ED .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (18) :1630-1641
[2]   STABILIZATION WITH RELAXED CONTROLS [J].
ARTSTEIN, Z .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (11) :1163-1173
[3]  
AUBIN JP, 1984, DIFFERNETIAL INCLUSI
[4]  
Brockett R. W., 1982, DIFFER GEOMETRIC CON, V27, P181
[5]  
Clarke F., 1998, NONSMOOTH ANAL CONTR
[6]   Feedback stabilization and Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Rifford, L ;
Stern, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) :25-48
[7]   Asymptotic controllability implies feedback stabilization [J].
Clarke, FH ;
Ledyaev, YS ;
Sontag, ED ;
Subbotin, AI .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1997, 42 (10) :1394-1407
[8]   Asymptotic stability and smooth Lyapunov functions [J].
Clarke, FH ;
Ledyaev, YS ;
Stern, RJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 149 (01) :69-114
[9]   SUBGRADIENT CRITERIA FOR MONOTONICITY, THE LIPSCHITZ CONDITION, AND CONVEXITY [J].
CLARKE, FH ;
STERN, RJ ;
WOLENSKI, PR .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1993, 45 (06) :1167-1183
[10]  
Deimling K., 1992, MULTIVALUED DIFFEREN, DOI DOI 10.1515/9783110874228