Improved estimates on the existence of invariant tori for Hamiltonian systems

被引:31
作者
Celletti, A
Giorgilli, A
Locatelli, U
机构
[1] Univ Aquila, Dipartimento Matemat, I-67100 Laquila, Italy
[2] Univ Milan, Dipartimento Fis, I-20133 Milan, Italy
[3] Observ Nice, F-06304 Nice, France
关键词
D O I
10.1088/0951-7715/13/2/304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of invariant tori in nearly integrable Hamiltonian systems is investigated. We focus our attention on a particular one-dimensional, time-dependent model, known as the forced pendulum. We present a KAM algorithm which allows us to derive explicit estimates on the perturbing parameter ensuring the existence of invariant tori. Moreover, we introduce some technical novelties in the proof of the KAM theorem which allow us to provide results in good agreement with the experimental breakdown threshold. In particular, we have been able to prove the existence of the golden torus with frequency 1/2(root 5 - 1) for values of the perturbing parameter equal to 92% of the numerical threshold, thus significantly improving the previous calculations. AMS classification scheme numbers: 58F27, 58F30, 58F36.
引用
收藏
页码:397 / 412
页数:16
相关论文
共 29 条
[1]  
[Anonymous], ANN SC NORM SUPER PI
[2]  
[Anonymous], 1996, MATH PHYS ELECT J
[3]  
Arnold VI, 1963, USP MAT NAUK, V18, P113
[4]   A PROOF OF KOLMOGOROV THEOREM ON INVARIANT TORI USING CANONICAL-TRANSFORMATIONS DEFINED BY THE LIE METHOD [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A ;
STRELCYN, JM .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1984, 79 (02) :201-223
[5]   NATURAL BOUNDARIES FOR AREA-PRESERVING TWIST MAPS [J].
BERRETTI, A ;
CELLETTI, A ;
CHIERCHIA, L ;
FALCOLINI, C .
JOURNAL OF STATISTICAL PHYSICS, 1992, 66 (5-6) :1613-1630
[6]   ON THE COMPLEX ANALYTIC STRUCTURE OF THE GOLDEN INVARIANT CURVE FOR THE STANDARD MAP [J].
BERRETTI, A ;
CHIERCHIA, L .
NONLINEARITY, 1990, 3 (01) :39-44
[7]   ANALYSIS OF RESONANCES IN THE SPIN-ORBIT PROBLEM IN CELESTIAL MECHANICS - THE SYNCHRONOUS RESONANCE .1. [J].
CELLETTI, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (02) :174-204
[8]   ANALYSIS OF RESONANCES IN THE SPIN-ORBIT PROBLEM IN CELESTIAL MECHANICS - HIGHER-ORDER RESONANCES AND SOME NUMERICAL EXPERIMENTS .2. [J].
CELLETTI, A .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (04) :453-479
[9]   On the stability of realistic three-body problems [J].
Celletti, A ;
Chierchia, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (02) :413-449
[10]   CONSTRUCTION OF ANALYTIC KAM SURFACES AND EFFECTIVE STABILITY BOUNDS [J].
CELLETTI, A ;
CHIERCHIA, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :119-161