An iteration method for chaotifying and controlling dynamical systems

被引:6
作者
Chen, MY [1 ]
Han, ZZ [1 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Automat, Intelligent Engn Lab, Shanghai 299939, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2002年 / 12卷 / 05期
关键词
chaotification; stabilization; nonlinear systems; iteration;
D O I
10.1142/S0218127402004991
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper proposes a new iteration method for chaotifying and controlling dynamical systems. By applying this iteration method, the dimension of the given dynamical system can be reduced from to n to n - 1. Moreover, the chaotified system is not necessarily Hurwitz stable originally. The iteration method is applied to three-dimensional systems for demonstration, for which a sufficient condition is obtained for chaotification. In addition, the iteration method can be used to control a class of chaotic systems. These results are illustrated via simulations on the Duffing oscillator and the Chen system.
引用
收藏
页码:1173 / 1180
页数:8
相关论文
共 23 条
[1]  
[Anonymous], 1998, CHAOS ENG THEORY APP
[2]   Bifurcation control of two nonlinear models of cardiac activity [J].
Brandt, ME ;
Chen, GR .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 1997, 44 (10) :1031-1034
[3]  
Chen G., 1998, CHAOS ORDER METHODOL
[4]  
Chen G., 1999, CONTROLLING CHAOS BI
[5]   Feedback control of Lyapunov exponents for discrete-time dynamical systems [J].
Chen, GR ;
Lai, DJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (07) :1341-1349
[6]   Feedback anticontrol of discrete chaos [J].
Chen, GR ;
Lai, DJ .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1585-1590
[7]  
Chen GR, 1997, IEEE T CIRCUITS-I, V44, P250
[8]  
Chen GR, 1997, IEEE DECIS CONTR P, P367, DOI 10.1109/CDC.1997.650650
[9]  
Ditto WL, 1996, AIP CONF PROC, P175, DOI 10.1063/1.51060
[10]  
JUDD K, 1997, CONTROL CHAOS MATH M