Ubiquitination-independent trafficking of G protein-coupled receptors to lysosomes

被引:108
作者
Tanowitz, M
von Zastrow, M
机构
[1] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
关键词
D O I
10.1074/jbc.C200536200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ubiquitination of cytoplasmic lysine residues can target G protein-coupled receptors (GPCRs) to proteasomes and has recently been shown to also be required for sorting of certain GPCRs to lysosomes following ligand-induced endocytosis. We addressed the generality of this mechanism by examining regulated proteolysis of the murine 5 opioid receptor (DOR) expressed in human embryonic kidney 293 cells, a well characterized model system in which receptors are sorted to lysosomes. Incubation of cells in the presence of the highly specific proteasome inhibitor lactacystin did not detectably affect ligand-induced proteolysis of DOR but significantly delayed ligand-induced proteolysis of epidermal growth factor receptors. Mutation of all cytoplasmic lysine residues in DOR, creating a mutant opioid receptor that is unable to be ubiquitinated, did not detectably inhibit either ligand-induced endocytosis or proteolytic degradation of endocytosed receptors. Furthermore, the lysine-mutated DOR, like its wild type counterpart, colocalized extensively with lysosomes after ligand-induced endocytosis. These results demonstrate that ubiquitination of DOR is not required either for its ligand-induced endocytosis or for postendocytic trafficking to lysosomes.
引用
收藏
页码:50219 / 50222
页数:4
相关论文
共 36 条
[1]   Novel inhibitors of the proteasome and their therapeutic use in inflammation [J].
Adams, J ;
Stein, R .
ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 31, 1996, 31 :279-288
[2]   Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking [J].
Babst, M ;
Odorizzi, G ;
Estepa, EJ ;
Emr, SD .
TRAFFIC, 2000, 1 (03) :248-258
[3]   Mammalian class E vps proteins recognize ubiquitin and act in the removal of endosomal protein-ubiquitin conjugates [J].
Bishop, N ;
Horman, A ;
Woodman, P .
JOURNAL OF CELL BIOLOGY, 2002, 157 (01) :91-101
[4]   A kinase-regulated PDZ-domain interaction controls endocytic sorting of the β2-adrenergic receptor [J].
Cao, TT ;
Deacon, HW ;
Reczek, D ;
Bretscher, A ;
von Zastrow, M .
NATURE, 1999, 401 (6750) :286-290
[5]   G-protein-coupled receptors: turn-ons and turn-offs [J].
Carman, CV ;
Benovic, JL .
CURRENT OPINION IN NEUROBIOLOGY, 1998, 8 (03) :335-344
[6]   Proteasome involvement in agonist-induced down-regulation of μ and δ opioid receptors [J].
Chaturvedi, K ;
Bandari, P ;
Chinen, N ;
Howells, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (15) :12345-12355
[7]   Binding of the β2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling [J].
Cong, M ;
Perry, SJ ;
Hu, LYA ;
Hanson, PI ;
Claing, A ;
Lefkowitz, RJ .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (48) :45145-45152
[8]   CLONING OF A DELTA OPIOID RECEPTOR BY FUNCTIONAL EXPRESSION [J].
EVANS, CJ ;
KEITH, DE ;
MORRISON, H ;
MAGENDZO, K ;
EDWARDS, RH .
SCIENCE, 1992, 258 (5090) :1952-1955
[9]   Molecular mechanisms of G protein-coupled receptor desensitization and resensitization [J].
Ferguson, SSG ;
Zhang, J ;
Barak, LS ;
Caron, MG .
LIFE SCIENCES, 1998, 62 (17-18) :1561-1565
[10]   MEMBRANE-TRANSPORT IN THE ENDOCYTIC PATHWAY [J].
GRUENBERG, J ;
MAXFIELD, FR .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (04) :552-563