Power-law sensitivity to initial conditions - New entropic representation

被引:205
作者
Tsallis, C
Plastino, AR
Zheng, WM
机构
[1] Ctro. Bras. de Pesq. Físicas, 22290-180, Rio de Janeiro
[2] Institute of Theoretical Physics, Academia Sinica, Beijing 100080
关键词
D O I
10.1016/S0960-0779(96)00167-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The exponential sensitivity to the initial conditions of chaotic systems (e.g. D=1) is characterized by the Liapounov exponent lambda, which is, for a large class of systems, known to equal the Kolmogorov-Sinai entropy K. We unify this type of sensitivity with a weaker, herein exhibited, power-law one through (for a dynamical variable x) lim(Delta x(0)-->0)[Delta(x)(t)]/[(Delta(x)(0)] = [1 + (1 - q)lambda(q)t](1/(1-q)) (equal to e(lambda 1f) for q = 1, and proportional, for large t, to t(1/(1-q)) for q not equal 1; q is an element of R). We show that lambda(q) = K-q (For All q), where K-q is the generalization of K within the non-extensive thermostatistics based upon the generalized entropic form S-q = (1 - Sigma(i)p(i)(q))/(q - 1) (hence, S-1 = -Sigma(1)p(i)lnp(i)). The well-known theorem lambda(1) = K-1 (Pesin equality) is thus extended to arbitrary q. We discuss the logistic map at its threshold to chaos, at period doubling bifurcations and at tangent bifurcations, and find q approximate to 0.2445, q = 5/3 and q = 3/2, respectively. 05.45. + b; 05.20. - y; 05.90. + m. (C) 1997 Elsevier Science Ltd.
引用
收藏
页码:885 / 891
页数:7
相关论文
共 48 条
[21]  
JACKSON EA, 1991, PERSPECTIVES NONLINE, V2
[22]   Generalized statistics and solar neutrinos [J].
Kaniadakis, G ;
Lavagno, A ;
Quarati, P .
PHYSICS LETTERS B, 1996, 369 (3-4) :308-312
[23]  
KOLMOGOROV AN, 1958, DOKL AKAD NAUK SSSR+, V119, P861
[24]  
Moon F.C., 1992, CHAOTIC FRACTAL DYNA
[25]  
Mundim KC, 1996, INT J QUANTUM CHEM, V58, P373, DOI 10.1002/(SICI)1097-461X(1996)58:4<373::AID-QUA6>3.3.CO
[26]  
2-9
[27]  
Penna T. J. P., 1995, Computers in Physics, V9, P341, DOI 10.1063/1.168533
[28]   TRAVELING SALESMAN PROBLEM AND TSALLIS STATISTICS [J].
PENNA, TJP .
PHYSICAL REVIEW E, 1995, 51 (01) :R1-R3
[29]   STELLAR POLYTROPES AND TSALLIS ENTROPY [J].
PLASTINO, AR ;
PLASTINO, A .
PHYSICS LETTERS A, 1993, 174 (5-6) :384-386
[30]   INFORMATION-THEORY, APPROXIMATE TIME-DEPENDENT SOLUTIONS OF BOLTZMANN-EQUATION AND TSALLIS ENTROPY [J].
PLASTINO, AR ;
PLASTINO, A .
PHYSICS LETTERS A, 1994, 193 (03) :251-258