Disease signatures are robust across tissues and experiments

被引:82
作者
Dudley, Joel T. [1 ,2 ,3 ]
Tibshirani, Robert [4 ,5 ]
Deshpande, Tarangini [6 ]
Butte, Atul J. [1 ,2 ,3 ]
机构
[1] Stanford Univ, Dept Med, Sch Med, Stanford Ctr Biomed Informat Res, Stanford, CA 94305 USA
[2] Stanford Univ, Sch Med, Dept Pediat, Stanford, CA 94305 USA
[3] Lucile Packard Childrens Hosp, Palo Alto, CA USA
[4] Stanford Univ, Dept Hlth Res & Policy, Stanford, CA 94305 USA
[5] Stanford Univ, Dept Stat, Stanford, CA 94305 USA
[6] NuMedii Inc, Menlo Pk, CA USA
关键词
computational biology; meta-analysis; microarrays; GENE-EXPRESSION DATA; MICROARRAY EXPERIMENTS; DNA MICROARRAY; BREAST-CANCER; METAANALYSIS; CLASSIFICATION; SARCOIDOSIS; INTEGRATION; PREDICTION; PROFILES;
D O I
10.1038/msb.2009.66
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Meta-analyses combining gene expression microarray experiments offer new insights into the molecular pathophysiology of disease not evident from individual experiments. Although the established technical reproducibility of microarrays serves as a basis for meta-analysis, pathophysiological reproducibility across experiments is not well established. In this study, we carried out a large-scale analysis of disease-associated experiments obtained from NCBI GEO, and evaluated their concordance across a broad range of diseases and tissue types. On evaluating 429 experiments, representing 238 diseases and 122 tissues from 8435 microarrays, we find evidence for a general, pathophysiological concordance between experiments measuring the same disease condition. Furthermore, we find that the molecular signature of disease across tissues is overall more prominent than the signature of tissue expression across diseases. The results offer new insight into the quality of public microarray data using pathophysiological metrics, and support new directions in meta-analysis that include characterization of the commonalities of disease irrespective of tissue, as well as the creation of multi-tissue systems models of disease pathology using public data. Molecular Systems Biology 5: 307; published online 15 September 2009; doi:10.1038/msb.2009.66
引用
收藏
页数:8
相关论文
共 36 条
[1]   Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling [J].
Alizadeh, AA ;
Eisen, MB ;
Davis, RE ;
Ma, C ;
Lossos, IS ;
Rosenwald, A ;
Boldrick, JG ;
Sabet, H ;
Tran, T ;
Yu, X ;
Powell, JI ;
Yang, LM ;
Marti, GE ;
Moore, T ;
Hudson, J ;
Lu, LS ;
Lewis, DB ;
Tibshirani, R ;
Sherlock, G ;
Chan, WC ;
Greiner, TC ;
Weisenburger, DD ;
Armitage, JO ;
Warnke, R ;
Levy, R ;
Wilson, W ;
Grever, MR ;
Byrd, JC ;
Botstein, D ;
Brown, PO ;
Staudt, LM .
NATURE, 2000, 403 (6769) :503-511
[2]  
[Anonymous], 2002, Nature, V419, P323
[3]   Insulin as a physiological modulator of glucagon secretion [J].
Bansal, Pritpal ;
Wang, Qinghua .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2008, 295 (04) :E751-E761
[4]   Oncogenic pathway signatures in human cancers as a guide to targeted therapies [J].
Bild, AH ;
Yao, G ;
Chang, JT ;
Wang, QL ;
Potti, A ;
Chasse, D ;
Joshi, MB ;
Harpole, D ;
Lancaster, JM ;
Berchuck, A ;
Olson, JA ;
Marks, JR ;
Dressman, HK ;
West, M ;
Nevins, JR .
NATURE, 2006, 439 (7074) :353-357
[5]   The Unified Medical Language System (UMLS): integrating biomedical terminology [J].
Bodenreider, O .
NUCLEIC ACIDS RESEARCH, 2004, 32 :D267-D270
[6]   Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments [J].
Breitling, R ;
Armengaud, P ;
Amtmann, A ;
Herzyk, P .
FEBS LETTERS, 2004, 573 (1-3) :83-92
[7]  
Butte Atul J, 2006, AMIA Annu Symp Proc, P106
[8]   AILUN: reannotating gene expression data automatically [J].
Chen, Rong ;
Li, Li ;
Butte, Atul J. .
NATURE METHODS, 2007, 4 (11) :879-879
[9]   A latent variable approach for meta-analysis of gene expression data from multiple microarray experiments [J].
Choi, Hyungwon ;
Shen, Ronglai ;
Chinnaiyan, Arul M. ;
Ghosh, Debashis .
BMC BIOINFORMATICS, 2007, 8 (1)
[10]   Multi-tissue coexpression networks reveal unexpected subnetworks associated with disease [J].
Dobrin, Radu ;
Zhu, Jun ;
Molony, Cliona ;
Argman, Carmen ;
Parrish, Mark L. ;
Carlson, Sonia ;
Allan, Mark F. ;
Pomp, Daniel ;
Schadt, Eric E. .
GENOME BIOLOGY, 2009, 10 (05)