Specific phosphorothioate substitutions probe the active site of Bacillus subtilis ribonuclease P

被引:44
作者
Crary, SM [1 ]
Kurz, JC [1 ]
Fierke, CA [1 ]
机构
[1] Duke Univ, Med Ctr, Dept Biochem, Durham, NC 27710 USA
关键词
magnesium; ribozyme; RNA ligation; RNase P; transient kinetics;
D O I
10.1017/S1355838202025025
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Ribonuclease P (RNase P) is a ribonucleoprotein that requires magnesium ions to catalyze the 51 maturation of transfer RNA. To identify interactions essential for catalysis, the properties of RNase P containing single sulfur substitutions for nonbridging phosphodiester oxygens in helix P4 of Bacillus subtilis RNase P were analyzed using transient kinetic experiments. Sulfur substitution at the nonbridging oxygens of the phosphodiester bond of nucleotide U51 only modestly affects catalysis. However, phosphorothioate substitutions at A49 and G50 decrease the cleavage rate constant enormously (300-4,000-fold for P RNA and 500-15,000-fold for RNase P holoenzyme) in magnesium without affecting the affinity of pre-tRNA(Asp), highlighting the importance of this region for catalysis. Furthermore, addition of manganese enhances pre-tRNA cleavage catalyzed by B. subtilis RNase P RNA containing an S-P phosphorothioate modification at A49, as observed for Escherichia coli P RNA [Christian et al., RNA, 2000, 6:511-519], suggesting that an essential metal ion may be coordinated at this site. In contrast, no manganese rescue is observed for the A49 S-P phosphorothioate modification in RNase P holoenzyme. These differential manganese rescue effects, along with affinity cleavage, suggest that the protein component may interact with a metal ion bound near A49 in helix P4 of P RNA.
引用
收藏
页码:933 / 947
页数:15
相关论文
共 68 条
[1]  
ANDERSON CF, 1995, ANNU REV PHYS CHEM, V46, P657, DOI 10.1146/annurev.physchem.46.1.657
[2]   Thiophilic metal ion rescue of phosphorothioate interference within the Tetrahymena ribozyme P4-P6 domain [J].
Basu, S ;
Strobel, SA .
RNA, 1999, 5 (11) :1399-1407
[3]   Magnesium ions are required by Bacillus subtilis ribonuclease P RNA for both binding and cleaving precursor tRNA(Asp) [J].
Beebe, JA ;
Kurz, JC ;
Fierke, CA .
BIOCHEMISTRY, 1996, 35 (32) :10493-10505
[4]   A KINETIC MECHANISM FOR CLEAVAGE OF PRECURSOR TRNA(ASP) CATALYZED BY THE RNA COMPONENT OF BACILLUS-SUBTILIS RIBONUCLEASE-P [J].
BEEBE, JA ;
FIERKE, CA .
BIOCHEMISTRY, 1994, 33 (34) :10294-10304
[5]   Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe [J].
Biswas, R ;
Ledman, DW ;
Fox, RO ;
Altman, S ;
Gopalan, V .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (01) :19-31
[6]   Structural principles for the inhibition of the 3′-5′ exonuclease activity of Escherichia coli DNA polymerase I by phosphorothioates [J].
Brautigam, CA ;
Steitz, TA .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (02) :363-377
[8]   Metal-binding sites in the major groove of a large ribozyme domain [J].
Cate, JH ;
Doudna, JA .
STRUCTURE, 1996, 4 (10) :1221-1229
[9]   A magnesium ion core at the heart of a ribozyme domain [J].
Cate, JH ;
Hanna, RL ;
Doudna, JA .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (07) :553-558
[10]  
Chen JL, 1997, RNA, V3, P557