Functional analysis of gene duplications in Saccharomyces cerevisiae

被引:127
作者
Guan, Yuanfang
Dunham, Maitreya J.
Troyanskaya, Olga G.
机构
[1] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] Princeton Univ, Lewis Sigler Inst Integrat Genom, Carl Icahn Lab, Princeton, NJ 08544 USA
关键词
D O I
10.1534/genetics.106.064329
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Gene duplication can occur on two scales: whole-genome duplications (WGD) and smaller-scale duplications (SSD) involving individual genes or genomic segments. Duplication may result in functionally redundant genes or diverge in function through neofunctionalization or subfunctionalization. The effect of duplication scale on functional evolution has not yet been explored, probably due to the lack of global knowledge Of Protein function and different times of duplication events. To address this question, we used integrated Bayesian analysis of diverse functional genomic data to accurately evaluate the extent of functional similarity and divergence between paralogs on a global scale. We found that paralogs resulting from the whole-genome duplication are more likely to share interaction partners and biological functions than smaller-scale duplicates, independent of sequence similarity. In addition, WGD paralogs show lower frequency of essential genes and higher synthetic lethality rate, but instead diverge more in expression pattern and upstream regulatory region. Thus, our analysis demonstrates that WGD paralogs generally have similar compensatory functions but diverging expression patterns, suggesting a potential of distinct evolutionary scenarios for paralogs that arose through different duplication mechanisms. Furthermore, by identifying these functional disparities between the two types of duplicates, we reconcile previous disputes on the relationship between sequence divergence and expression divergence or essentiality.
引用
收藏
页码:933 / 943
页数:11
相关论文
共 49 条
  • [1] BASIC LOCAL ALIGNMENT SEARCH TOOL
    ALTSCHUL, SF
    GISH, W
    MILLER, W
    MYERS, EW
    LIPMAN, DJ
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) : 403 - 410
  • [2] Gene Ontology: tool for the unification of biology
    Ashburner, M
    Ball, CA
    Blake, JA
    Botstein, D
    Butler, H
    Cherry, JM
    Davis, AP
    Dolinski, K
    Dwight, SS
    Eppig, JT
    Harris, MA
    Hill, DP
    Issel-Tarver, L
    Kasarskis, A
    Lewis, S
    Matese, JC
    Richardson, JE
    Ringwald, M
    Rubin, GM
    Sherlock, G
    [J]. NATURE GENETICS, 2000, 25 (01) : 25 - 29
  • [3] A scale of functional divergence for yeast duplicated genes revealed from analysis of the protein-protein interaction network
    Baudot, A
    Jacq, B
    Brun, C
    [J]. GENOME BIOLOGY, 2004, 5 (10)
  • [4] The GRID: The General Repository for Interaction Datasets
    Breitkreutz, BJ
    Stark, C
    Tyers, M
    [J]. GENOME BIOLOGY, 2003, 4 (03)
  • [5] The landscape of genetic complexity across 5,700 gene expression traits in yeast
    Brem, RB
    Kruglyak, L
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (05) : 1572 - 1577
  • [6] Brun Christine, 2003, Journal of Structural and Functional Genomics, V3, P213, DOI 10.1023/A:1022694824569
  • [7] The Yeast Gene Order Browser: Combining curated homology and syntenic context reveals gene fate in polyploid species
    Byrne, KP
    Wolfe, KH
    [J]. GENOME RESEARCH, 2005, 15 (10) : 1456 - 1461
  • [8] Cherest H, 1997, GENETICS, V145, P627
  • [9] SGD:: Saccharomyces Genome Database
    Cherry, JM
    Adler, C
    Ball, C
    Chervitz, SA
    Dwight, SS
    Hester, ET
    Jia, YK
    Juvik, G
    Roe, T
    Schroeder, M
    Weng, SA
    Botstein, D
    [J]. NUCLEIC ACIDS RESEARCH, 1998, 26 (01) : 73 - 79
  • [10] Functional partitioning of yeast co-expression networks after genome duplication
    Conant, GC
    Wolfe, KH
    [J]. PLOS BIOLOGY, 2006, 4 (04) : 545 - 554