Stabilized hp-finite element methods for first-order hyperbolic problems

被引:96
作者
Houston, P [1 ]
Schwab, C
Süli, E
机构
[1] Univ Leicester, Dept Math & Comp Sci, Leicester LE1 7RH, Leics, England
[2] Swiss Fed Inst Technol, Seminar Appl Math, CH-8092 Zurich, Switzerland
[3] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
关键词
hp-finite element methods; hyperbolic problems;
D O I
10.1137/S0036142998348777
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We analyze the hp-version of the streamline-diffusion finite element method (SDFEM) and of the discontinuous Galerkin finite element method (DGFEM) for first-order linear hyperbolic problems. For both methods, we derive new error estimates on general finite element meshes which are sharp in the mesh-width h and in the spectral order p of the method, assuming that the stabilization parameter is O(h/p). For piecewise analytic solutions, exponential convergence is established on quadrilateral meshes. For the DGFEM we admit very general irregular meshes and for the SDFEM we allow meshes which contain hanging nodes. Numerical experiments confirm the theoretical results.
引用
收藏
页码:1618 / 1643
页数:26
相关论文
共 15 条
[1]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[2]   hp-Version discontinuous Galerkin methods for hyperbolic conservation laws [J].
Bey, KS ;
Oden, JT .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 133 (3-4) :259-286
[3]  
BRAESS D, 2000, IN PRESS J APPROX TH
[4]  
COCKBURN B, UNPUB OPTIMAL PRIORI
[5]  
Cockburn B., 1999, HIGH ORDER METHODS C, V9, P69
[6]  
Demkowicz L., 1998, Computing and Visualization in Science, V1, P145, DOI 10.1007/s007910050014
[7]   A posteriori error analysis for numerical approximations of Friedrichs systems [J].
Houston, P ;
Mackenzie, JA ;
Süli, E ;
Warnecke, G .
NUMERISCHE MATHEMATIK, 1999, 82 (03) :433-470
[8]  
HOUSTON P, 2000, UNPUB HP DISCONTINUO
[9]  
JOHNSON C, 1986, MATH COMPUT, V46, P1, DOI 10.1090/S0025-5718-1986-0815828-4
[10]   FINITE-ELEMENT METHODS FOR LINEAR HYPERBOLIC PROBLEMS [J].
JOHNSON, C ;
NAVERT, U ;
PITKARANTA, J .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1984, 45 (1-3) :285-312