Entropy measures for networks: Toward an information theory of complex topologies

被引:221
作者
Anand, Kartik [1 ]
Bianconi, Ginestra [2 ]
机构
[1] Abdus Salam Int Ctr Theoret Phys, I-34014 Trieste, Italy
[2] Northeastern Univ, Dept Phys, Boston, MA 02115 USA
关键词
complex networks; entropy;
D O I
10.1103/PhysRevE.80.045102
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The quantification of the complexity of networks is, today, a fundamental problem in the physics of complex systems. A possible roadmap to solve the problem is via extending key concepts of information theory to networks. In this Rapid Communication we propose how to define the Shannon entropy of a network ensemble and how it relates to the Gibbs and von Neumann entropies of network ensembles. The quantities we introduce here will play a crucial role for the formulation of null models of networks through maximum-entropy arguments and will contribute to inference problems emerging in the field of complex networks.
引用
收藏
页数:4
相关论文
共 30 条
[11]   Homogeneous complex networks [J].
Bogacz, Leszek ;
Burda, Zdzislaw ;
Waclaw, Bartlomiej .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2006, 366 (01) :587-607
[12]   Class of correlated random networks with hidden variables -: art. no. 036112 [J].
Boguñá, M ;
Pastor-Satorras, R .
PHYSICAL REVIEW E, 2003, 68 (03) :13
[13]   The Laplacian of a graph as a density matrix: A basic combinatorial approach to separability of mixed states [J].
Braunstein, Samuel L. ;
Ghosh, Sibasish ;
Severini, Simone .
ANNALS OF COMBINATORICS, 2006, 10 (03) :291-317
[14]   Inverse Mermin-Wagner theorem for classical spin models on graphs [J].
Burioni, R ;
Cassi, D ;
Vezzani, A .
PHYSICAL REVIEW E, 1999, 60 (02) :1500-1502
[15]   Scale-free networks from varying vertex intrinsic fitness -: art. no. 258702 [J].
Caldarelli, G ;
Capocci, A ;
De Los Rios, P ;
Muñoz, MA .
PHYSICAL REVIEW LETTERS, 2002, 89 (25)
[16]  
Cover T. M., 1999, ELEMENTS INFORM THEO, DOI [DOI 10.1002/0471200611, 10.1002/0471200611]
[17]   Critical phenomena in complex networks [J].
Dorogovtsev, S. N. ;
Goltsev, A. V. ;
Mendes, J. F. F. .
REVIEWS OF MODERN PHYSICS, 2008, 80 (04) :1275-1335
[18]   Evolution of networks [J].
Dorogovtsev, SN ;
Mendes, JFF .
ADVANCES IN PHYSICS, 2002, 51 (04) :1079-1187
[19]  
FORTUNATO S, ARXIV09060612
[20]   Maximum likelihood: Extracting unbiased information from complex networks [J].
Garlaschelli, Diego ;
Loffredo, Maria I. .
PHYSICAL REVIEW E, 2008, 78 (01)