The depressive-like behaviors are correlated with decreased phosphorylation of mitogen-activated protein kinases in rat brain following chronic forced swim stress

被引:147
作者
Qi, Xiaoli
Lin, Wenjuan [1 ]
Li, Junfa
Pan, Yuqin
Wang, Weiwen
机构
[1] Chinese Acad Sci, Inst Psychol, Brain Behav Res Ctr, Beijing 100101, Peoples R China
[2] Capital Univ Med Sci, Beijing 100069, Peoples R China
基金
中国国家自然科学基金;
关键词
stress; open field; anhedonia; MAPKs; hippocampus; prefrontal cortex;
D O I
10.1016/j.bbr.2006.08.035
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
In the present study, 40 Sprague-Dawley rats were divided into forced swim stress group and controls, with 20 rats in each group (10 for behavioral tests. 10 for protein detection). The forced swim stress group received swim stress for 14 consecutive days, and the controls were stress-free. After stress, 20 rats were tested for behavioral observation using body weight gain, open field, elevated plus-maze and saccharine preference test, and 20 rats were decapitated for protein detection. The extracellular signal-regulated kinase (Erk) and phospho-Erk (P-Erk) in the hippocampus and prefrontal cortex were determined using western blot. It was found that the body weight gain of stressed animals during the 7 stressed days and the 14 stressed days was significantly decreased compared to that of controls. Stressed animals spent less time in open arms and longer time in closed arms. The stressed animals demonstrated decreased locomotor activity and increased grooming in open field. The saccharine solution intake and the ratio of saccharine solution intake to total liquid intake were both decreased in the stressed group. Stressed animals showed decreased P-Erk2 and decreased ratio of P-Erk2 to total Erk2 in the hippocampus and prefrontal cortex, but their Erk1/2 was increased in the prefrontal cortex with no change in hippocampus. The saccharine solution intake positively correlated with the P-Erk2 in the hippocampus and negatively correlated with the Erk2 in the prefrontal cortex. In conclusion, chronic forced swim stress was a good animal model of depression, and it induced depressive-like behavior and decreased P-Erk2 in the hippocampus and prefrontal cortex in rats. The depressive-like behaviors were correlated with decreased phosphorylation of Erk, which suggested that the dysfunction of Erk activity might be one of biological mechanisms underlying depression induced by stress. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 240
页数:8
相关论文
共 57 条
[1]   INACTIVATION OF P42 MAP KINASE BY PROTEIN PHOSPHATASE 2A AND A PROTEIN-TYROSINE-PHOSPHATASE, BUT NOT CL100, IN VARIOUS CELL-LINES [J].
ALESSI, DR ;
GOMEZ, N ;
MOORHEAD, C ;
LEWIS, T ;
KEYSE, SM ;
COHEN, P .
CURRENT BIOLOGY, 1995, 5 (03) :283-295
[2]  
[Anonymous], CNS SPECTRUMS
[3]   PHYSIOLOGICAL COMPENSATION FOR LOSS OF AFFERENT SYNAPSES IN RAT HIPPOCAMPAL GRANULE CELLS DURING SENESCENCE [J].
BARNES, CA ;
MCNAUGHTON, BL .
JOURNAL OF PHYSIOLOGY-LONDON, 1980, 309 (DEC) :473-485
[4]  
Blum S, 1999, J NEUROSCI, V19, P3535
[5]   Learning-associated activation of nuclear MAPK, CREB and Elk-1, along with Fos production, in the rat hippocampus after a one-trial avoidance learning: abolition by NMDA receptor blockade [J].
Cammarota, M ;
Bevilaqua, LRM ;
Ardenghi, P ;
Paratcha, G ;
de Stein, ML ;
Izquierdo, I ;
Medina, JH .
MOLECULAR BRAIN RESEARCH, 2000, 76 (01) :36-46
[6]   The many faces of CREB [J].
Carlezon, WA ;
Duman, RS ;
Nestler, EJ .
TRENDS IN NEUROSCIENCES, 2005, 28 (08) :436-445
[7]   5-HT1A receptor-mediated regulation of mitogen-activated protein kinase phosphorylation in rat brain [J].
Chen, JY ;
Shen, CP ;
Meller, E .
EUROPEAN JOURNAL OF PHARMACOLOGY, 2002, 452 (02) :155-162
[8]   MAP kinases [J].
Chen, Z ;
Gibson, TB ;
Robinson, F ;
Silvestro, L ;
Pearson, G ;
Xu, BE ;
Wright, A ;
Vanderbilt, C ;
Cobb, MH .
CHEMICAL REVIEWS, 2001, 101 (08) :2449-2476
[9]   Assessing antidepressant activity in rodents: recent developments and future needs [J].
Cryan, JF ;
Markou, A ;
Lucki, I .
TRENDS IN PHARMACOLOGICAL SCIENCES, 2002, 23 (05) :238-245
[10]   The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo [J].
Davis, S ;
Vanhoutte, P ;
Pagés, C ;
Caboche, J ;
Laroche, S .
JOURNAL OF NEUROSCIENCE, 2000, 20 (12) :4563-4572