Evaluation of the maximum transformation rate for analyzing solid-state phase transformation kinetics

被引:69
作者
Liu, F. [1 ,2 ]
Song, S. J. [2 ]
Sommer, F. [1 ]
Mittemeijer, E. J. [1 ,3 ]
机构
[1] Max Planck Inst Met Res, D-70569 Stuttgart, Germany
[2] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[3] Univ Stuttgart, Inst Mat Sci, D-7000 Stuttgart, Germany
基金
中国国家自然科学基金;
关键词
Phase transformation; Nucleation; Growth; Kinetics; THERMAL-ANALYSIS; CRYSTALLIZATION KINETICS; TRANSIENT NUCLEATION; ANALYTICAL-MODEL; GROWTH; PARAMETER;
D O I
10.1016/j.actamat.2009.08.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An evaluation of the maximum in the transformation rate of a solid-state transformation is given for isothermal and isochronal transformations, on the basis of a general, flexible, analytical transformation model incorporating different combinations of nucleation, growth and impingement modes. For isothermal phase transformations, the position of the peak maximum is determined by the growth exponent and the impingement mode whereas, for isochronal phase transformations, only the impingement mode influences the position of the peak maximum. A straightforward method has been developed for determining the mode of impingement and the separate activation energies for nucleation and growth. The results obtained by application of the proposed transformation-rate maximum analysis to model systems are in good agreement with the values assigned to the kinetic parameters of the model systems. The proposed recipes have also been applied successfully to experimental data on the crystallization of an initially amorphous Mg-Cu-Y alloy. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:6176 / 6190
页数:15
相关论文
共 39 条
[1]   Granulation, Phase Change, and Microstructure - Kinetics of Phase Change. III [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (02) :177-184
[2]   Kinetics of phase change I - General theory [J].
Avrami, M .
JOURNAL OF CHEMICAL PHYSICS, 1939, 7 (12) :1103-1112
[3]  
Avrami M., 1940, J. Chem. Phys, V8, P212, DOI [DOI 10.1063/1.1750631, 10.1063/1.1750631]
[4]   Application of thermal analysis methods to nucleation and growth transformation kinetics [J].
Baram, J ;
Erukhimovitch, V .
THERMOCHIMICA ACTA, 1997, 291 (1-2) :81-84
[5]   KINETICS OF THE CRYSTALLIZATION OF AMORPHOUS TI2NI [J].
BUCHWITZ, M ;
ADLWARTHDIEBALL, R ;
RYDER, PL .
ACTA METALLURGICA ET MATERIALIA, 1993, 41 (06) :1885-1892
[6]  
Christian J.W., 1975, The theory of transformations in metals. Part I Equilibrium and General Kinetic Theory, Vsecond
[7]   On the kinetics of the initial oxidation of iron and iron nitride [J].
Graat, PCJ ;
Somers, MAJ ;
Mittemeijer, EJ .
ZEITSCHRIFT FUR METALLKUNDE, 2002, 93 (06) :532-539
[8]   THERMAL-ANALYSIS OF NONISOTHERMAL CRYSTALLIZATION KINETICS IN GLASS FORMING LIQUIDS [J].
HENDERSON, DW .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 1979, 30 (03) :301-315
[9]   A TRANSIENT NUCLEATION MODEL FOR SOLID-STATE AMORPHIZATION [J].
HIGHMORE, RJ ;
GREER, AL ;
LEAKE, JA ;
EVETTS, JE .
MATERIALS LETTERS, 1988, 6 (11-12) :401-405
[10]  
Johnson WA, 1939, T AM I MIN MET ENG, V135, P416