Self-supported supercapacitor membranes: Polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition

被引:151
作者
Fang, Yueping [1 ]
Liu, Jianwei [1 ]
Yu, Deok Jin [4 ]
Wicksted, James P. [4 ]
Kalkan, Kaan [5 ]
Topal, C. Ozge [5 ]
Flanders, Bret N. [2 ]
Wu, Judy [3 ]
Li, Jun [1 ]
机构
[1] Kansas State Univ, Dept Chem, Manhattan, KS 66506 USA
[2] Kansas State Univ, Dept Phys, Manhattan, KS 66506 USA
[3] Univ Kansas, Dept Phys, Manhattan, KS 66044 USA
[4] Oklahoma State Univ, Dept Phys, Stillwater, OK 74078 USA
[5] Oklahoma State Univ, Dept Mech & Aerosp Engn, Stillwater, OK 74078 USA
基金
美国国家科学基金会;
关键词
Supercapacitor; Carbon nanotube film; Electrical conducting polymer; ELECTROCHEMICAL CAPACITANCE; CONDUCTING POLYMERS; COMPOSITES; STORAGE; ENERGY; FILMS;
D O I
10.1016/j.jpowsour.2009.07.033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Self-supported supercapacitor electrodes with remarkably high specific capacitance have been developed by homogeneously coating polypyrrole (PPy) on multi-walled carbon nanotube (MWCNT) membranes. Polypyrrole can be deposited around the individual MWCNTs in a uniform manner throughout the MWCNT membrane via a pulsed electrochemical deposition method. This approach optimizes the pseudocapacitance of the membrane. Electrochemical data and Raman spectra indicate that the high specific capacitance is not only due to more uniform PPy coating, but also higher redox activity that is likely associated with a more ordered PPy packing. Such composite membranes can be directly used as supercapacitor electrodes without backing metal films or binders. A remarkable specific capacitance of 427 F g(-1) has been achieved using 5-s electrodeposition pulses. This technique provides a viable solution for developing high-performance electrical energy storage devices. (C) 2009 Elsevier B. V. All rights reserved.
引用
收藏
页码:674 / 679
页数:6
相关论文
共 26 条
  • [1] Nanostructured materials for advanced energy conversion and storage devices
    Aricò, AS
    Bruce, P
    Scrosati, B
    Tarascon, JM
    Van Schalkwijk, W
    [J]. NATURE MATERIALS, 2005, 4 (05) : 366 - 377
  • [2] Chen GZ, 2000, ADV MATER, V12, P522, DOI 10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO
  • [3] 2-S
  • [4] Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization
    Chen, RJ
    Zhang, YG
    Wang, DW
    Dai, HJ
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (16) : 3838 - 3839
  • [5] Selective interaction of a semiconjugated organic polymer with single-wall nanotubes
    Dalton, AB
    Stephan, C
    Coleman, JN
    McCarthy, B
    Ajayan, PM
    Lefrant, S
    Bernier, P
    Blau, WJ
    Byrne, HJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (43) : 10012 - 10016
  • [6] *DOE, 2007, DOE WORKSH REP BAS R
  • [7] Supercapacitors based on conducting polymers/nanotubes composites
    Frackowiak, E
    Khomenko, V
    Jurewicz, K
    Lota, K
    Béguin, F
    [J]. JOURNAL OF POWER SOURCES, 2006, 153 (02) : 413 - 418
  • [8] Electrochemical storage of energy in carbon nanotubes and nanostructured carbons
    Frackowiak, E
    Béguin, F
    [J]. CARBON, 2002, 40 (10) : 1775 - 1787
  • [9] Supercapacitor electrodes from multiwalled carbon nanotubes
    Frackowiak, E
    Metenier, K
    Bertagna, V
    Beguin, F
    [J]. APPLIED PHYSICS LETTERS, 2000, 77 (15) : 2421 - 2423
  • [10] Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors
    Gamby, J
    Taberna, PL
    Simon, P
    Fauvarque, JF
    Chesneau, M
    [J]. JOURNAL OF POWER SOURCES, 2001, 101 (01) : 109 - 116