Comparative microarray analysis

被引:41
作者
Larsson, Ola
Wennmalm, Kristian
Sandberg, Rickard
机构
[1] Univ Minnesota, Dept Med, Minneapolis, MN 55455 USA
[2] Karolinska Inst, Ctr Canc, Dept Pathol & Oncol, Stockholm, Sweden
[3] St Gorans Univ Hosp, S-11281 Stockholm, Sweden
[4] MIT, Dept Biol, Cambridge, MA 02139 USA
关键词
D O I
10.1089/omi.2006.10.381
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Microarrays enable high-throughput parallel gene expression analysis, and their use has grown exponentially during the past decade. We are now in a position where individual experiments could benefit from using the swelling public data repositories to allow microarrays to progress from being a hypothesis-generating tool to a powerful resource that can be used to test hypothesis about biology. Comparative microarray analysis could better distinguish phenotypes from associated phenotypes; identify valid differentially expressed genes by combining many studies; test new hypothesis; and discover fundamental patterns of gene regulation. This review aims to describe the additional methodology needed for such comparative microarray analysis, and we identify and discuss a number of problems such as loss of published data, lack of annotations, and variable array quality, which need to be solved before comparative microarray analysis can be used in a more systematic and powerful manner.
引用
收藏
页码:381 / 397
页数:17
相关论文
共 70 条
[1]   Topological and functional discovery in a gene coexpression meta-network of gastric cancer [J].
Aggarwal, A ;
Guo, DL ;
Hoshida, Y ;
Yuen, ST ;
Chu, KM ;
So, S ;
Boussioutas, A ;
Chen, X ;
Bowtell, D ;
Aburatani, H ;
Leung, SY ;
Tan, P .
CANCER RESEARCH, 2006, 66 (01) :232-241
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]  
Barrett T, 2005, NUCLEIC ACIDS RES, V33, pD562
[4]   Molecular classification of cutaneous malignant melanoma by gene expression profiling [J].
Bittner, M ;
Meitzer, P ;
Chen, Y ;
Jiang, Y ;
Seftor, E ;
Hendrix, M ;
Radmacher, M ;
Simon, R ;
Yakhini, Z ;
Ben-Dor, A ;
Sampas, N ;
Dougherty, E ;
Wang, E ;
Marincola, F ;
Gooden, C ;
Lueders, J ;
Glatfelter, A ;
Pollock, P ;
Carpten, J ;
Gillanders, E ;
Leja, D ;
Dietrich, K ;
Beaudry, C ;
Berens, M ;
Alberts, D ;
Sondak, V ;
Hayward, N ;
Trent, J .
NATURE, 2000, 406 (6795) :536-540
[5]   A comparison of normalization methods for high density oligonucleotide array data based on variance and bias [J].
Bolstad, BM ;
Irizarry, RA ;
Åstrand, M ;
Speed, TP .
BIOINFORMATICS, 2003, 19 (02) :185-193
[6]   Integration of GO annotations in Correspondence Analysis: facilitating the interpretation of microarray data [J].
Busold, CH ;
Winter, S ;
Hauser, N ;
Bauer, A ;
Dippon, J ;
Hoheisel, JD ;
Fellenberg, K .
BIOINFORMATICS, 2005, 21 (10) :2424-2429
[7]   List of lists-annotated (LOLA): A database for annotation and comparison of published microarray gene lists [J].
Cahan, P ;
Ahmad, AM ;
Burke, H ;
Fu, S ;
Lai, YL ;
Florea, L ;
Dharker, N ;
Kobrinski, T ;
Kale, P ;
McCaffrey, TA .
GENE, 2005, 360 (01) :78-82
[8]   Redefinition of affymetrix probe sets by sequence overlap with cDNA microarray probes reduces cross-platform inconsistencies in cancer-associated gene expression measurements [J].
Carter, SL ;
Eklund, AC ;
Mecham, BH ;
Kohane, IS ;
Szallasi, Z .
BMC BIOINFORMATICS, 2005, 6 (1)
[9]   Integrative analysis of multiple gene expression profiles applied to liver cancer study [J].
Choi, JK ;
Choi, JY ;
Kim, DG ;
Choi, DW ;
Kim, BY ;
Lee, KH ;
Yeom, YI ;
Yoo, HS ;
Yoo, OJ ;
Kim, S .
FEBS LETTERS, 2004, 565 (1-3) :93-100
[10]   Combining multiple microarray studies and modeling interstudy variation [J].
Choi, Jung Kyoon ;
Yu, Ungsik ;
Kim, Sangsoo ;
Yoo, Ook Joon .
BIOINFORMATICS, 2003, 19 :i84-i90