Nanoscale Zirconia as a Nonmetallic Catalyst for Graphitization of Carbon and Growth of Single- and Multiwall Carbon Nanotubes

被引:194
作者
Steiner, Stephen A., III [1 ]
Baumann, Theodore F. [2 ]
Bayer, Bernhard C. [3 ]
Blume, Raoul [4 ]
Worsley, Marcus A. [2 ]
MoberlyChan, Warren J. [2 ]
Shaw, Elisabeth L. [5 ]
Schloegl, Robert [4 ]
Hart, A. John [1 ,6 ]
Hofmann, Stephan [3 ]
Wardle, Brian L. [1 ]
机构
[1] MIT, Dept Aeronaut & Astronaut, Cambridge, MA 02139 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Univ Cambridge, Dept Engn, Cambridge CB3 0FA, England
[4] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
[5] MIT, Ctr Mat Sci & Engn, Cambridge, MA 02139 USA
[6] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
CHEMICAL-VAPOR-DEPOSITION; IN-SITU; X-RAY; REDUCTION; FIBERS; AEROGELS; SILICON; QUARTZ; OXYGEN; XPS;
D O I
10.1021/ja902913r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report that nanoparticulate zirconia (ZrO2) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperatures (750 degrees C). High-pressure, time-resolved X-ray photoelectron spectroscopy (XPS) of these substrates during carbon nanotube nucleation and growth shows that the zirconia catalyst neither reduces to a metal nor forms a carbide. Point-localized energy-dispersive X-ray spectroscopy (EDAX) using scanning transmission electron microscopy (STEM) confirms catalyst nanoparticles attached to CNTs are zirconia. We also observe that carbon aerogels prepared through pyrolysis of a Zr(IV)-containing resorcinol-formaldehyde polymer aerogel precursor at 800 degrees C contain fullerenic cage structures absent in undoped carbon aerogels. Zirconia nanoparticles embedded in these carbon aerogels are further observed to act as nucleation sites for multiwall carbon nanotube growth upon exposure to hydrocarbons at CVD growth temperatures. Our study unambiguously demonstrates that a nonmetallic catalyst can catalyze CNT growth by thermal CVD while remaining in an oxidized state and provides new insight into the interactions between nanoparticulate metal oxides and carbon at elevated temperatures.
引用
收藏
页码:12144 / 12154
页数:11
相关论文
共 73 条
[11]   The catalyst in the CCVD of carbon nanotubes - a review [J].
Dupuis, AC .
PROGRESS IN MATERIALS SCIENCE, 2005, 50 (08) :929-961
[12]  
Dzhurinskii B.F., 1975, RUSS J INORG CHEM+, V20, P2307
[13]   The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies [J].
Esconjauregui, Santiago ;
Whelan, Caroline M. ;
Maex, Karen .
CARBON, 2009, 47 (03) :659-669
[14]   Metal-supported ultrathin oxide film systems as designable catalysts and catalyst supports [J].
Freund, Hans-Joachim .
SURFACE SCIENCE, 2007, 601 (06) :1438-1442
[15]   Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels [J].
Fu, RW ;
Baumann, TF ;
Cronin, S ;
Dresselhaus, G ;
Dresselhaus, MS ;
Satcher, JH .
LANGMUIR, 2005, 21 (07) :2647-2651
[16]   XPS study of copper-doped carbon aerogels [J].
Fu, RW ;
Yoshizawa, N ;
Dresselhaus, MS ;
Dresselhaus, G ;
Satcher, JH ;
Baumann, TF .
LANGMUIR, 2002, 18 (26) :10100-10104
[17]   Fabrication and multifunctional properties of a hybrid laminate with aligned carbon nanotubes grown In Situ [J].
Garcia, Enrique J. ;
Wardle, Brian L. ;
Hart, A. John ;
Yamamoto, Namiko .
COMPOSITES SCIENCE AND TECHNOLOGY, 2008, 68 (09) :2034-2041
[18]  
Gaskell D. R., 2001, ENCY MAT SCI TECHNOL, P5481, DOI DOI 10.1016/B0-08-043152-6/00956-6
[19]  
GUITTET MJ, 2000, PHYS REV B, P63
[20]   Catalytic growth of single-wall carbon nanotubes from metal particles [J].
Hafner, JH ;
Bronikowski, MJ ;
Azamian, BR ;
Nikolaev, P ;
Rinzler, AG ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) :195-202